bump compose-go to version v2.6.0

Signed-off-by: Guillaume Lours <705411+glours@users.noreply.github.com>
This commit is contained in:
Guillaume Lours
2025-04-10 18:02:16 +02:00
parent f8de3c3bdc
commit 0b4e624aaa
23 changed files with 397 additions and 768 deletions

27
vendor/golang.org/x/exp/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright 2009 The Go Authors.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google LLC nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/exp/PATENTS generated vendored
View File

@ -1,22 +0,0 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

View File

@ -1,54 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package constraints defines a set of useful constraints to be used
// with type parameters.
package constraints
import "cmp"
// Signed is a constraint that permits any signed integer type.
// If future releases of Go add new predeclared signed integer types,
// this constraint will be modified to include them.
type Signed interface {
~int | ~int8 | ~int16 | ~int32 | ~int64
}
// Unsigned is a constraint that permits any unsigned integer type.
// If future releases of Go add new predeclared unsigned integer types,
// this constraint will be modified to include them.
type Unsigned interface {
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
}
// Integer is a constraint that permits any integer type.
// If future releases of Go add new predeclared integer types,
// this constraint will be modified to include them.
type Integer interface {
Signed | Unsigned
}
// Float is a constraint that permits any floating-point type.
// If future releases of Go add new predeclared floating-point types,
// this constraint will be modified to include them.
type Float interface {
~float32 | ~float64
}
// Complex is a constraint that permits any complex numeric type.
// If future releases of Go add new predeclared complex numeric types,
// this constraint will be modified to include them.
type Complex interface {
~complex64 | ~complex128
}
// Ordered is a constraint that permits any ordered type: any type
// that supports the operators < <= >= >.
// If future releases of Go add new ordered types,
// this constraint will be modified to include them.
//
// This type is redundant since Go 1.21 introduced [cmp.Ordered].
//
//go:fix inline
type Ordered = cmp.Ordered

86
vendor/golang.org/x/exp/maps/maps.go generated vendored
View File

@ -1,86 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package maps defines various functions useful with maps of any type.
package maps
import "maps"
// Keys returns the keys of the map m.
// The keys will be in an indeterminate order.
//
// The simplest true equivalent using the standard library is:
//
// slices.AppendSeq(make([]K, 0, len(m)), maps.Keys(m))
func Keys[M ~map[K]V, K comparable, V any](m M) []K {
r := make([]K, 0, len(m))
for k := range m {
r = append(r, k)
}
return r
}
// Values returns the values of the map m.
// The values will be in an indeterminate order.
//
// The simplest true equivalent using the standard library is:
//
// slices.AppendSeq(make([]V, 0, len(m)), maps.Values(m))
func Values[M ~map[K]V, K comparable, V any](m M) []V {
r := make([]V, 0, len(m))
for _, v := range m {
r = append(r, v)
}
return r
}
// Equal reports whether two maps contain the same key/value pairs.
// Values are compared using ==.
//
//go:fix inline
func Equal[M1, M2 ~map[K]V, K, V comparable](m1 M1, m2 M2) bool {
return maps.Equal(m1, m2)
}
// EqualFunc is like Equal, but compares values using eq.
// Keys are still compared with ==.
//
//go:fix inline
func EqualFunc[M1 ~map[K]V1, M2 ~map[K]V2, K comparable, V1, V2 any](m1 M1, m2 M2, eq func(V1, V2) bool) bool {
return maps.EqualFunc(m1, m2, eq)
}
// Clear removes all entries from m, leaving it empty.
//
//go:fix inline
func Clear[M ~map[K]V, K comparable, V any](m M) {
clear(m)
}
// Clone returns a copy of m. This is a shallow clone:
// the new keys and values are set using ordinary assignment.
//
//go:fix inline
func Clone[M ~map[K]V, K comparable, V any](m M) M {
return maps.Clone(m)
}
// Copy copies all key/value pairs in src adding them to dst.
// When a key in src is already present in dst,
// the value in dst will be overwritten by the value associated
// with the key in src.
//
//go:fix inline
func Copy[M1 ~map[K]V, M2 ~map[K]V, K comparable, V any](dst M1, src M2) {
maps.Copy(dst, src)
}
// DeleteFunc deletes any key/value pairs from m for which del returns true.
//
//go:fix inline
func DeleteFunc[M ~map[K]V, K comparable, V any](m M, del func(K, V) bool) {
maps.DeleteFunc(m, del)
}

View File

@ -1,182 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slices defines various functions useful with slices of any type.
package slices
import (
"cmp"
"slices"
)
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
//
//go:fix inline
func Equal[S ~[]E, E comparable](s1, s2 S) bool {
return slices.Equal(s1, s2)
}
// EqualFunc reports whether two slices are equal using an equality
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
//
//go:fix inline
func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
return slices.EqualFunc(s1, s2, eq)
}
// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
// of elements. The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
//
//go:fix inline
func Compare[S ~[]E, E cmp.Ordered](s1, s2 S) int {
return slices.Compare(s1, s2)
}
// CompareFunc is like [Compare] but uses a custom comparison function on each
// pair of elements.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
//
//go:fix inline
func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
return slices.CompareFunc(s1, s2, cmp)
}
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
//
//go:fix inline
func Index[S ~[]E, E comparable](s S, v E) int {
return slices.Index(s, v)
}
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
//
//go:fix inline
func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
return slices.IndexFunc(s, f)
}
// Contains reports whether v is present in s.
//
//go:fix inline
func Contains[S ~[]E, E comparable](s S, v E) bool {
return slices.Contains(s, v)
}
// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
//
//go:fix inline
func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
return slices.ContainsFunc(s, f)
}
// Insert inserts the values v... into s at index i,
// returning the modified slice.
// The elements at s[i:] are shifted up to make room.
// In the returned slice r, r[i] == v[0],
// and r[i+len(v)] == value originally at r[i].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
//
//go:fix inline
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
return slices.Insert(s, i, v...)
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if j > len(s) or s[i:j] is not a valid slice of s.
// Delete is O(len(s)-i), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete zeroes the elements s[len(s)-(j-i):len(s)].
//
//go:fix inline
func Delete[S ~[]E, E any](s S, i, j int) S {
return slices.Delete(s, i, j)
}
// DeleteFunc removes any elements from s for which del returns true,
// returning the modified slice.
// DeleteFunc zeroes the elements between the new length and the original length.
//
//go:fix inline
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
return slices.DeleteFunc(s, del)
}
// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
// When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
//
//go:fix inline
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
return slices.Replace(s, i, j, v...)
}
// Clone returns a copy of the slice.
// The elements are copied using assignment, so this is a shallow clone.
//
//go:fix inline
func Clone[S ~[]E, E any](s S) S {
return slices.Clone(s)
}
// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
// Compact modifies the contents of the slice s and returns the modified slice,
// which may have a smaller length.
// Compact zeroes the elements between the new length and the original length.
//
//go:fix inline
func Compact[S ~[]E, E comparable](s S) S {
return slices.Compact(s)
}
// CompactFunc is like [Compact] but uses an equality function to compare elements.
// For runs of elements that compare equal, CompactFunc keeps the first one.
// CompactFunc zeroes the elements between the new length and the original length.
//
//go:fix inline
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
return slices.CompactFunc(s, eq)
}
// Grow increases the slice's capacity, if necessary, to guarantee space for
// another n elements. After Grow(n), at least n elements can be appended
// to the slice without another allocation. If n is negative or too large to
// allocate the memory, Grow panics.
//
//go:fix inline
func Grow[S ~[]E, E any](s S, n int) S {
return slices.Grow(s, n)
}
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
//
//go:fix inline
func Clip[S ~[]E, E any](s S) S {
return slices.Clip(s)
}
// Reverse reverses the elements of the slice in place.
//
//go:fix inline
func Reverse[S ~[]E, E any](s S) {
slices.Reverse(s)
}

View File

@ -1,115 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package slices
import (
"cmp"
"slices"
)
// Sort sorts a slice of any ordered type in ascending order.
// When sorting floating-point numbers, NaNs are ordered before other values.
//
//go:fix inline
func Sort[S ~[]E, E cmp.Ordered](x S) {
slices.Sort(x)
}
// SortFunc sorts the slice x in ascending order as determined by the cmp
// function. This sort is not guaranteed to be stable.
// cmp(a, b) should return a negative number when a < b, a positive number when
// a > b and zero when a == b or when a is not comparable to b in the sense
// of the formal definition of Strict Weak Ordering.
//
// SortFunc requires that cmp is a strict weak ordering.
// See https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings.
// To indicate 'uncomparable', return 0 from the function.
//
//go:fix inline
func SortFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
slices.SortFunc(x, cmp)
}
// SortStableFunc sorts the slice x while keeping the original order of equal
// elements, using cmp to compare elements in the same way as [SortFunc].
//
//go:fix inline
func SortStableFunc[S ~[]E, E any](x S, cmp func(a, b E) int) {
slices.SortStableFunc(x, cmp)
}
// IsSorted reports whether x is sorted in ascending order.
//
//go:fix inline
func IsSorted[S ~[]E, E cmp.Ordered](x S) bool {
return slices.IsSorted(x)
}
// IsSortedFunc reports whether x is sorted in ascending order, with cmp as the
// comparison function as defined by [SortFunc].
//
//go:fix inline
func IsSortedFunc[S ~[]E, E any](x S, cmp func(a, b E) int) bool {
return slices.IsSortedFunc(x, cmp)
}
// Min returns the minimal value in x. It panics if x is empty.
// For floating-point numbers, Min propagates NaNs (any NaN value in x
// forces the output to be NaN).
//
//go:fix inline
func Min[S ~[]E, E cmp.Ordered](x S) E {
return slices.Min(x)
}
// MinFunc returns the minimal value in x, using cmp to compare elements.
// It panics if x is empty. If there is more than one minimal element
// according to the cmp function, MinFunc returns the first one.
//
//go:fix inline
func MinFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
return slices.MinFunc(x, cmp)
}
// Max returns the maximal value in x. It panics if x is empty.
// For floating-point E, Max propagates NaNs (any NaN value in x
// forces the output to be NaN).
//
//go:fix inline
func Max[S ~[]E, E cmp.Ordered](x S) E {
return slices.Max(x)
}
// MaxFunc returns the maximal value in x, using cmp to compare elements.
// It panics if x is empty. If there is more than one maximal element
// according to the cmp function, MaxFunc returns the first one.
//
//go:fix inline
func MaxFunc[S ~[]E, E any](x S, cmp func(a, b E) int) E {
return slices.MaxFunc(x, cmp)
}
// BinarySearch searches for target in a sorted slice and returns the position
// where target is found, or the position where target would appear in the
// sort order; it also returns a bool saying whether the target is really found
// in the slice. The slice must be sorted in increasing order.
//
//go:fix inline
func BinarySearch[S ~[]E, E cmp.Ordered](x S, target E) (int, bool) {
return slices.BinarySearch(x, target)
}
// BinarySearchFunc works like [BinarySearch], but uses a custom comparison
// function. The slice must be sorted in increasing order, where "increasing"
// is defined by cmp. cmp should return 0 if the slice element matches
// the target, a negative number if the slice element precedes the target,
// or a positive number if the slice element follows the target.
// cmp must implement the same ordering as the slice, such that if
// cmp(a, t) < 0 and cmp(b, t) >= 0, then a must precede b in the slice.
//
//go:fix inline
func BinarySearchFunc[S ~[]E, E, T any](x S, target T, cmp func(E, T) int) (int, bool) {
return slices.BinarySearchFunc(x, target, cmp)
}