mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-24 04:08:04 +08:00
deps: update buildkit, vendor changes
Signed-off-by: Laura Brehm <laurabrehm@hey.com>
This commit is contained in:
133
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
Normal file
133
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
Normal file
@@ -0,0 +1,133 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
// now is used to return the current local time while allowing tests to
|
||||
// override the default time.Now function.
|
||||
var now = time.Now
|
||||
|
||||
// Measure receives measurements to be aggregated.
|
||||
type Measure[N int64 | float64] func(context.Context, N, attribute.Set)
|
||||
|
||||
// ComputeAggregation stores the aggregate of measurements into dest and
|
||||
// returns the number of aggregate data-points output.
|
||||
type ComputeAggregation func(dest *metricdata.Aggregation) int
|
||||
|
||||
// Builder builds an aggregate function.
|
||||
type Builder[N int64 | float64] struct {
|
||||
// Temporality is the temporality used for the returned aggregate function.
|
||||
//
|
||||
// If this is not provided a default of cumulative will be used (except for
|
||||
// the last-value aggregate function where delta is the only appropriate
|
||||
// temporality).
|
||||
Temporality metricdata.Temporality
|
||||
// Filter is the attribute filter the aggregate function will use on the
|
||||
// input of measurements.
|
||||
Filter attribute.Filter
|
||||
}
|
||||
|
||||
func (b Builder[N]) filter(f Measure[N]) Measure[N] {
|
||||
if b.Filter != nil {
|
||||
fltr := b.Filter // Copy to make it immutable after assignment.
|
||||
return func(ctx context.Context, n N, a attribute.Set) {
|
||||
fAttr, _ := a.Filter(fltr)
|
||||
f(ctx, n, fAttr)
|
||||
}
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// LastValue returns a last-value aggregate function input and output.
|
||||
//
|
||||
// The Builder.Temporality is ignored and delta is use always.
|
||||
func (b Builder[N]) LastValue() (Measure[N], ComputeAggregation) {
|
||||
// Delta temporality is the only temporality that makes semantic sense for
|
||||
// a last-value aggregate.
|
||||
lv := newLastValue[N]()
|
||||
|
||||
return b.filter(lv.measure), func(dest *metricdata.Aggregation) int {
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory
|
||||
// reuse of the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
lv.computeAggregation(&gData.DataPoints)
|
||||
*dest = gData
|
||||
|
||||
return len(gData.DataPoints)
|
||||
}
|
||||
}
|
||||
|
||||
// PrecomputedSum returns a sum aggregate function input and output. The
|
||||
// arguments passed to the input are expected to be the precomputed sum values.
|
||||
func (b Builder[N]) PrecomputedSum(monotonic bool) (Measure[N], ComputeAggregation) {
|
||||
s := newPrecomputedSum[N](monotonic)
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(s.measure), s.delta
|
||||
default:
|
||||
return b.filter(s.measure), s.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
// Sum returns a sum aggregate function input and output.
|
||||
func (b Builder[N]) Sum(monotonic bool) (Measure[N], ComputeAggregation) {
|
||||
s := newSum[N](monotonic)
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(s.measure), s.delta
|
||||
default:
|
||||
return b.filter(s.measure), s.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
// ExplicitBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
h := newHistogram[N](boundaries, noMinMax, noSum)
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(h.measure), h.delta
|
||||
default:
|
||||
return b.filter(h.measure), h.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
// ExponentialBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExponentialBucketHistogram(maxSize, maxScale int32, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
h := newExponentialHistogram[N](maxSize, maxScale, noMinMax, noSum)
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(h.measure), h.delta
|
||||
default:
|
||||
return b.filter(h.measure), h.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
// reset ensures s has capacity and sets it length. If the capacity of s too
|
||||
// small, a new slice is returned with the specified capacity and length.
|
||||
func reset[T any](s []T, length, capacity int) []T {
|
||||
if cap(s) < capacity {
|
||||
return make([]T, length, capacity)
|
||||
}
|
||||
return s[:length]
|
||||
}
|
18
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/doc.go
generated
vendored
Normal file
18
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/doc.go
generated
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package aggregate provides aggregate types used compute aggregations and
|
||||
// cycle the state of metric measurements made by the SDK. These types and
|
||||
// functionality are meant only for internal SDK use.
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
432
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
Normal file
432
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
Normal file
@@ -0,0 +1,432 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"errors"
|
||||
"math"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel"
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
const (
|
||||
expoMaxScale = 20
|
||||
expoMinScale = -10
|
||||
|
||||
smallestNonZeroNormalFloat64 = 0x1p-1022
|
||||
|
||||
// These redefine the Math constants with a type, so the compiler won't coerce
|
||||
// them into an int on 32 bit platforms.
|
||||
maxInt64 int64 = math.MaxInt64
|
||||
minInt64 int64 = math.MinInt64
|
||||
)
|
||||
|
||||
// expoHistogramDataPoint is a single data point in an exponential histogram.
|
||||
type expoHistogramDataPoint[N int64 | float64] struct {
|
||||
count uint64
|
||||
min N
|
||||
max N
|
||||
sum N
|
||||
|
||||
maxSize int
|
||||
noMinMax bool
|
||||
noSum bool
|
||||
|
||||
scale int
|
||||
|
||||
posBuckets expoBuckets
|
||||
negBuckets expoBuckets
|
||||
zeroCount uint64
|
||||
}
|
||||
|
||||
func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
|
||||
f := math.MaxFloat64
|
||||
max := N(f) // if N is int64, max will overflow to -9223372036854775808
|
||||
min := N(-f)
|
||||
if N(maxInt64) > N(f) {
|
||||
max = N(maxInt64)
|
||||
min = N(minInt64)
|
||||
}
|
||||
return &expoHistogramDataPoint[N]{
|
||||
min: max,
|
||||
max: min,
|
||||
maxSize: maxSize,
|
||||
noMinMax: noMinMax,
|
||||
noSum: noSum,
|
||||
scale: maxScale,
|
||||
}
|
||||
}
|
||||
|
||||
// record adds a new measurement to the histogram. It will rescale the buckets if needed.
|
||||
func (p *expoHistogramDataPoint[N]) record(v N) {
|
||||
p.count++
|
||||
|
||||
if !p.noMinMax {
|
||||
if v < p.min {
|
||||
p.min = v
|
||||
}
|
||||
if v > p.max {
|
||||
p.max = v
|
||||
}
|
||||
}
|
||||
if !p.noSum {
|
||||
p.sum += v
|
||||
}
|
||||
|
||||
absV := math.Abs(float64(v))
|
||||
|
||||
if float64(absV) == 0.0 {
|
||||
p.zeroCount++
|
||||
return
|
||||
}
|
||||
|
||||
bin := p.getBin(absV)
|
||||
|
||||
bucket := &p.posBuckets
|
||||
if v < 0 {
|
||||
bucket = &p.negBuckets
|
||||
}
|
||||
|
||||
// If the new bin would make the counts larger than maxScale, we need to
|
||||
// downscale current measurements.
|
||||
if scaleDelta := p.scaleChange(bin, bucket.startBin, len(bucket.counts)); scaleDelta > 0 {
|
||||
if p.scale-scaleDelta < expoMinScale {
|
||||
// With a scale of -10 there is only two buckets for the whole range of float64 values.
|
||||
// This can only happen if there is a max size of 1.
|
||||
otel.Handle(errors.New("exponential histogram scale underflow"))
|
||||
return
|
||||
}
|
||||
//Downscale
|
||||
p.scale -= scaleDelta
|
||||
p.posBuckets.downscale(scaleDelta)
|
||||
p.negBuckets.downscale(scaleDelta)
|
||||
|
||||
bin = p.getBin(absV)
|
||||
}
|
||||
|
||||
bucket.record(bin)
|
||||
}
|
||||
|
||||
// getBin returns the bin v should be recorded into.
|
||||
func (p *expoHistogramDataPoint[N]) getBin(v float64) int {
|
||||
frac, exp := math.Frexp(v)
|
||||
if p.scale <= 0 {
|
||||
// Because of the choice of fraction is always 1 power of two higher than we want.
|
||||
correction := 1
|
||||
if frac == .5 {
|
||||
// If v is an exact power of two the frac will be .5 and the exp
|
||||
// will be one higher than we want.
|
||||
correction = 2
|
||||
}
|
||||
return (exp - correction) >> (-p.scale)
|
||||
}
|
||||
return exp<<p.scale + int(math.Log(frac)*scaleFactors[p.scale]) - 1
|
||||
}
|
||||
|
||||
// scaleFactors are constants used in calculating the logarithm index. They are
|
||||
// equivalent to 2^index/log(2).
|
||||
var scaleFactors = [21]float64{
|
||||
math.Ldexp(math.Log2E, 0),
|
||||
math.Ldexp(math.Log2E, 1),
|
||||
math.Ldexp(math.Log2E, 2),
|
||||
math.Ldexp(math.Log2E, 3),
|
||||
math.Ldexp(math.Log2E, 4),
|
||||
math.Ldexp(math.Log2E, 5),
|
||||
math.Ldexp(math.Log2E, 6),
|
||||
math.Ldexp(math.Log2E, 7),
|
||||
math.Ldexp(math.Log2E, 8),
|
||||
math.Ldexp(math.Log2E, 9),
|
||||
math.Ldexp(math.Log2E, 10),
|
||||
math.Ldexp(math.Log2E, 11),
|
||||
math.Ldexp(math.Log2E, 12),
|
||||
math.Ldexp(math.Log2E, 13),
|
||||
math.Ldexp(math.Log2E, 14),
|
||||
math.Ldexp(math.Log2E, 15),
|
||||
math.Ldexp(math.Log2E, 16),
|
||||
math.Ldexp(math.Log2E, 17),
|
||||
math.Ldexp(math.Log2E, 18),
|
||||
math.Ldexp(math.Log2E, 19),
|
||||
math.Ldexp(math.Log2E, 20),
|
||||
}
|
||||
|
||||
// scaleChange returns the magnitude of the scale change needed to fit bin in
|
||||
// the bucket. If no scale change is needed 0 is returned.
|
||||
func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int {
|
||||
if length == 0 {
|
||||
// No need to rescale if there are no buckets.
|
||||
return 0
|
||||
}
|
||||
|
||||
low := startBin
|
||||
high := bin
|
||||
if startBin >= bin {
|
||||
low = bin
|
||||
high = startBin + length - 1
|
||||
}
|
||||
|
||||
count := 0
|
||||
for high-low >= p.maxSize {
|
||||
low = low >> 1
|
||||
high = high >> 1
|
||||
count++
|
||||
if count > expoMaxScale-expoMinScale {
|
||||
return count
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// expoBuckets is a set of buckets in an exponential histogram.
|
||||
type expoBuckets struct {
|
||||
startBin int
|
||||
counts []uint64
|
||||
}
|
||||
|
||||
// record increments the count for the given bin, and expands the buckets if needed.
|
||||
// Size changes must be done before calling this function.
|
||||
func (b *expoBuckets) record(bin int) {
|
||||
if len(b.counts) == 0 {
|
||||
b.counts = []uint64{1}
|
||||
b.startBin = bin
|
||||
return
|
||||
}
|
||||
|
||||
endBin := b.startBin + len(b.counts) - 1
|
||||
|
||||
// if the new bin is inside the current range
|
||||
if bin >= b.startBin && bin <= endBin {
|
||||
b.counts[bin-b.startBin]++
|
||||
return
|
||||
}
|
||||
// if the new bin is before the current start add spaces to the counts
|
||||
if bin < b.startBin {
|
||||
origLen := len(b.counts)
|
||||
newLength := endBin - bin + 1
|
||||
shift := b.startBin - bin
|
||||
|
||||
if newLength > cap(b.counts) {
|
||||
b.counts = append(b.counts, make([]uint64, newLength-len(b.counts))...)
|
||||
}
|
||||
|
||||
copy(b.counts[shift:origLen+shift], b.counts[:])
|
||||
b.counts = b.counts[:newLength]
|
||||
for i := 1; i < shift; i++ {
|
||||
b.counts[i] = 0
|
||||
}
|
||||
b.startBin = bin
|
||||
b.counts[0] = 1
|
||||
return
|
||||
}
|
||||
// if the new is after the end add spaces to the end
|
||||
if bin > endBin {
|
||||
if bin-b.startBin < cap(b.counts) {
|
||||
b.counts = b.counts[:bin-b.startBin+1]
|
||||
for i := endBin + 1 - b.startBin; i < len(b.counts); i++ {
|
||||
b.counts[i] = 0
|
||||
}
|
||||
b.counts[bin-b.startBin] = 1
|
||||
return
|
||||
}
|
||||
|
||||
end := make([]uint64, bin-b.startBin-len(b.counts)+1)
|
||||
b.counts = append(b.counts, end...)
|
||||
b.counts[bin-b.startBin] = 1
|
||||
}
|
||||
}
|
||||
|
||||
// downscale shrinks a bucket by a factor of 2*s. It will sum counts into the
|
||||
// correct lower resolution bucket.
|
||||
func (b *expoBuckets) downscale(delta int) {
|
||||
// Example
|
||||
// delta = 2
|
||||
// Original offset: -6
|
||||
// Counts: [ 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
||||
// bins: -6 -5, -4, -3, -2, -1, 0, 1, 2, 3, 4
|
||||
// new bins:-2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1
|
||||
// new Offset: -2
|
||||
// new Counts: [4, 14, 30, 10]
|
||||
|
||||
if len(b.counts) <= 1 || delta < 1 {
|
||||
b.startBin = b.startBin >> delta
|
||||
return
|
||||
}
|
||||
|
||||
steps := 1 << delta
|
||||
offset := b.startBin % steps
|
||||
offset = (offset + steps) % steps // to make offset positive
|
||||
for i := 1; i < len(b.counts); i++ {
|
||||
idx := i + offset
|
||||
if idx%steps == 0 {
|
||||
b.counts[idx/steps] = b.counts[i]
|
||||
continue
|
||||
}
|
||||
b.counts[idx/steps] += b.counts[i]
|
||||
}
|
||||
|
||||
lastIdx := (len(b.counts) - 1 + offset) / steps
|
||||
b.counts = b.counts[:lastIdx+1]
|
||||
b.startBin = b.startBin >> delta
|
||||
}
|
||||
|
||||
// newExponentialHistogram returns an Aggregator that summarizes a set of
|
||||
// measurements as an exponential histogram. Each histogram is scoped by attributes
|
||||
// and the aggregation cycle the measurements were made in.
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool) *expoHistogram[N] {
|
||||
return &expoHistogram[N]{
|
||||
noSum: noSum,
|
||||
noMinMax: noMinMax,
|
||||
maxSize: int(maxSize),
|
||||
maxScale: int(maxScale),
|
||||
|
||||
values: make(map[attribute.Set]*expoHistogramDataPoint[N]),
|
||||
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// expoHistogram summarizes a set of measurements as an histogram with exponentially
|
||||
// defined buckets.
|
||||
type expoHistogram[N int64 | float64] struct {
|
||||
noSum bool
|
||||
noMinMax bool
|
||||
maxSize int
|
||||
maxScale int
|
||||
|
||||
values map[attribute.Set]*expoHistogramDataPoint[N]
|
||||
valuesMu sync.Mutex
|
||||
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
// Ignore NaN and infinity.
|
||||
if math.IsInf(float64(value), 0) || math.IsNaN(float64(value)) {
|
||||
return
|
||||
}
|
||||
|
||||
e.valuesMu.Lock()
|
||||
defer e.valuesMu.Unlock()
|
||||
|
||||
v, ok := e.values[attr]
|
||||
if !ok {
|
||||
v = newExpoHistogramDataPoint[N](e.maxSize, e.maxScale, e.noMinMax, e.noSum)
|
||||
e.values[attr] = v
|
||||
}
|
||||
v.record(value)
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed.
|
||||
// In that case, use the zero-value h and hope for better alignment next cycle.
|
||||
h, _ := (*dest).(metricdata.ExponentialHistogram[N])
|
||||
h.Temporality = metricdata.DeltaTemporality
|
||||
|
||||
e.valuesMu.Lock()
|
||||
defer e.valuesMu.Unlock()
|
||||
|
||||
n := len(e.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range e.values {
|
||||
hDPts[i].Attributes = a
|
||||
hDPts[i].StartTime = e.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Scale = int32(b.scale)
|
||||
hDPts[i].ZeroCount = b.zeroCount
|
||||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts))
|
||||
|
||||
if !e.noSum {
|
||||
hDPts[i].Sum = b.sum
|
||||
}
|
||||
if !e.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
}
|
||||
|
||||
delete(e.values, a)
|
||||
i++
|
||||
}
|
||||
e.start = t
|
||||
h.DataPoints = hDPts
|
||||
*dest = h
|
||||
return n
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed.
|
||||
// In that case, use the zero-value h and hope for better alignment next cycle.
|
||||
h, _ := (*dest).(metricdata.ExponentialHistogram[N])
|
||||
h.Temporality = metricdata.CumulativeTemporality
|
||||
|
||||
e.valuesMu.Lock()
|
||||
defer e.valuesMu.Unlock()
|
||||
|
||||
n := len(e.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range e.values {
|
||||
hDPts[i].Attributes = a
|
||||
hDPts[i].StartTime = e.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Scale = int32(b.scale)
|
||||
hDPts[i].ZeroCount = b.zeroCount
|
||||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts))
|
||||
|
||||
if !e.noSum {
|
||||
hDPts[i].Sum = b.sum
|
||||
}
|
||||
if !e.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
}
|
||||
|
||||
i++
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
// overload the system.
|
||||
}
|
||||
|
||||
h.DataPoints = hDPts
|
||||
*dest = h
|
||||
return n
|
||||
}
|
231
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
Normal file
231
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
Normal file
@@ -0,0 +1,231 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"sort"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
type buckets[N int64 | float64] struct {
|
||||
counts []uint64
|
||||
count uint64
|
||||
total N
|
||||
min, max N
|
||||
}
|
||||
|
||||
// newBuckets returns buckets with n bins.
|
||||
func newBuckets[N int64 | float64](n int) *buckets[N] {
|
||||
return &buckets[N]{counts: make([]uint64, n)}
|
||||
}
|
||||
|
||||
func (b *buckets[N]) sum(value N) { b.total += value }
|
||||
|
||||
func (b *buckets[N]) bin(idx int, value N) {
|
||||
b.counts[idx]++
|
||||
b.count++
|
||||
if value < b.min {
|
||||
b.min = value
|
||||
} else if value > b.max {
|
||||
b.max = value
|
||||
}
|
||||
}
|
||||
|
||||
// histValues summarizes a set of measurements as an histValues with
|
||||
// explicitly defined buckets.
|
||||
type histValues[N int64 | float64] struct {
|
||||
noSum bool
|
||||
bounds []float64
|
||||
|
||||
values map[attribute.Set]*buckets[N]
|
||||
valuesMu sync.Mutex
|
||||
}
|
||||
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool) *histValues[N] {
|
||||
// The responsibility of keeping all buckets correctly associated with the
|
||||
// passed boundaries is ultimately this type's responsibility. Make a copy
|
||||
// here so we can always guarantee this. Or, in the case of failure, have
|
||||
// complete control over the fix.
|
||||
b := make([]float64, len(bounds))
|
||||
copy(b, bounds)
|
||||
sort.Float64s(b)
|
||||
return &histValues[N]{
|
||||
noSum: noSum,
|
||||
bounds: b,
|
||||
values: make(map[attribute.Set]*buckets[N]),
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregate records the measurement value, scoped by attr, and aggregates it
|
||||
// into a histogram.
|
||||
func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
// This search will return an index in the range [0, len(s.bounds)], where
|
||||
// it will return len(s.bounds) if value is greater than the last element
|
||||
// of s.bounds. This aligns with the buckets in that the length of buckets
|
||||
// is len(s.bounds)+1, with the last bucket representing:
|
||||
// (s.bounds[len(s.bounds)-1], +∞).
|
||||
idx := sort.SearchFloat64s(s.bounds, float64(value))
|
||||
|
||||
s.valuesMu.Lock()
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
b, ok := s.values[attr]
|
||||
if !ok {
|
||||
// N+1 buckets. For example:
|
||||
//
|
||||
// bounds = [0, 5, 10]
|
||||
//
|
||||
// Then,
|
||||
//
|
||||
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
|
||||
b = newBuckets[N](len(s.bounds) + 1)
|
||||
// Ensure min and max are recorded values (not zero), for new buckets.
|
||||
b.min, b.max = value, value
|
||||
s.values[attr] = b
|
||||
}
|
||||
b.bin(idx, value)
|
||||
if !s.noSum {
|
||||
b.sum(value)
|
||||
}
|
||||
}
|
||||
|
||||
// newHistogram returns an Aggregator that summarizes a set of measurements as
|
||||
// an histogram.
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool) *histogram[N] {
|
||||
return &histogram[N]{
|
||||
histValues: newHistValues[N](boundaries, noSum),
|
||||
noMinMax: noMinMax,
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// histogram summarizes a set of measurements as an histogram with explicitly
|
||||
// defined buckets.
|
||||
type histogram[N int64 | float64] struct {
|
||||
*histValues[N]
|
||||
|
||||
noMinMax bool
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
|
||||
// case, use the zero-value h and hope for better alignment next cycle.
|
||||
h, _ := (*dest).(metricdata.Histogram[N])
|
||||
h.Temporality = metricdata.DeltaTemporality
|
||||
|
||||
s.valuesMu.Lock()
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
// Do not allow modification of our copy of bounds.
|
||||
bounds := make([]float64, len(s.bounds))
|
||||
copy(bounds, s.bounds)
|
||||
|
||||
n := len(s.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range s.values {
|
||||
hDPts[i].Attributes = a
|
||||
hDPts[i].StartTime = s.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Bounds = bounds
|
||||
hDPts[i].BucketCounts = b.counts
|
||||
|
||||
if !s.noSum {
|
||||
hDPts[i].Sum = b.total
|
||||
}
|
||||
|
||||
if !s.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
}
|
||||
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, a)
|
||||
i++
|
||||
}
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
h.DataPoints = hDPts
|
||||
*dest = h
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
|
||||
// case, use the zero-value h and hope for better alignment next cycle.
|
||||
h, _ := (*dest).(metricdata.Histogram[N])
|
||||
h.Temporality = metricdata.CumulativeTemporality
|
||||
|
||||
s.valuesMu.Lock()
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
// Do not allow modification of our copy of bounds.
|
||||
bounds := make([]float64, len(s.bounds))
|
||||
copy(bounds, s.bounds)
|
||||
|
||||
n := len(s.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range s.values {
|
||||
// The HistogramDataPoint field values returned need to be copies of
|
||||
// the buckets value as we will keep updating them.
|
||||
//
|
||||
// TODO (#3047): Making copies for bounds and counts incurs a large
|
||||
// memory allocation footprint. Alternatives should be explored.
|
||||
counts := make([]uint64, len(b.counts))
|
||||
copy(counts, b.counts)
|
||||
|
||||
hDPts[i].Attributes = a
|
||||
hDPts[i].StartTime = s.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Bounds = bounds
|
||||
hDPts[i].BucketCounts = counts
|
||||
|
||||
if !s.noSum {
|
||||
hDPts[i].Sum = b.total
|
||||
}
|
||||
|
||||
if !s.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
}
|
||||
i++
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
// overload the system.
|
||||
}
|
||||
|
||||
h.DataPoints = hDPts
|
||||
*dest = h
|
||||
|
||||
return n
|
||||
}
|
68
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
Normal file
68
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
// datapoint is timestamped measurement data.
|
||||
type datapoint[N int64 | float64] struct {
|
||||
timestamp time.Time
|
||||
value N
|
||||
}
|
||||
|
||||
func newLastValue[N int64 | float64]() *lastValue[N] {
|
||||
return &lastValue[N]{values: make(map[attribute.Set]datapoint[N])}
|
||||
}
|
||||
|
||||
// lastValue summarizes a set of measurements as the last one made.
|
||||
type lastValue[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
|
||||
values map[attribute.Set]datapoint[N]
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) measure(ctx context.Context, value N, attr attribute.Set) {
|
||||
d := datapoint[N]{timestamp: now(), value: value}
|
||||
s.Lock()
|
||||
s.values[attr] = d
|
||||
s.Unlock()
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) computeAggregation(dest *[]metricdata.DataPoint[N]) {
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
*dest = reset(*dest, n, n)
|
||||
|
||||
var i int
|
||||
for a, v := range s.values {
|
||||
(*dest)[i].Attributes = a
|
||||
// The event time is the only meaningful timestamp, StartTime is
|
||||
// ignored.
|
||||
(*dest)[i].Time = v.timestamp
|
||||
(*dest)[i].Value = v.value
|
||||
// Do not report stale values.
|
||||
delete(s.values, a)
|
||||
i++
|
||||
}
|
||||
}
|
222
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
Normal file
222
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
Normal file
@@ -0,0 +1,222 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
// valueMap is the storage for sums.
|
||||
type valueMap[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
values map[attribute.Set]N
|
||||
}
|
||||
|
||||
func newValueMap[N int64 | float64]() *valueMap[N] {
|
||||
return &valueMap[N]{values: make(map[attribute.Set]N)}
|
||||
}
|
||||
|
||||
func (s *valueMap[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
s.Lock()
|
||||
s.values[attr] += value
|
||||
s.Unlock()
|
||||
}
|
||||
|
||||
// newSum returns an aggregator that summarizes a set of measurements as their
|
||||
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
|
||||
// the measurements were made in.
|
||||
func newSum[N int64 | float64](monotonic bool) *sum[N] {
|
||||
return &sum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// sum summarizes a set of measurements made as their arithmetic sum.
|
||||
type sum[N int64 | float64] struct {
|
||||
*valueMap[N]
|
||||
|
||||
monotonic bool
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.DeltaTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
// Do not report stale values.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.CumulativeTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
// overload the system.
|
||||
i++
|
||||
}
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
// newPrecomputedSum returns an aggregator that summarizes a set of
|
||||
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// the aggregation cycle the measurements were made in.
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool) *precomputedSum[N] {
|
||||
return &precomputedSum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// precomputedSum summarizes a set of observatrions as their arithmetic sum.
|
||||
type precomputedSum[N int64 | float64] struct {
|
||||
*valueMap[N]
|
||||
|
||||
monotonic bool
|
||||
start time.Time
|
||||
|
||||
reported map[attribute.Set]N
|
||||
}
|
||||
|
||||
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
newReported := make(map[attribute.Set]N)
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.DeltaTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
delta := value - s.reported[attr]
|
||||
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = delta
|
||||
|
||||
newReported[attr] = value
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets are forgotten.
|
||||
s.reported = newReported
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.CumulativeTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
24
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
Normal file
24
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package internal // import "go.opentelemetry.io/otel/sdk/metric/internal"
|
||||
|
||||
// ReuseSlice returns a zeroed view of slice if its capacity is greater than or
|
||||
// equal to n. Otherwise, it returns a new []T with capacity equal to n.
|
||||
func ReuseSlice[T any](slice []T, n int) []T {
|
||||
if cap(slice) >= n {
|
||||
return slice[:n]
|
||||
}
|
||||
return make([]T, n)
|
||||
}
|
Reference in New Issue
Block a user