mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-09 21:17:09 +08:00
deps: update buildkit, vendor changes
Signed-off-by: Laura Brehm <laurabrehm@hey.com>
This commit is contained in:
222
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
Normal file
222
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
Normal file
@ -0,0 +1,222 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
// valueMap is the storage for sums.
|
||||
type valueMap[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
values map[attribute.Set]N
|
||||
}
|
||||
|
||||
func newValueMap[N int64 | float64]() *valueMap[N] {
|
||||
return &valueMap[N]{values: make(map[attribute.Set]N)}
|
||||
}
|
||||
|
||||
func (s *valueMap[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
s.Lock()
|
||||
s.values[attr] += value
|
||||
s.Unlock()
|
||||
}
|
||||
|
||||
// newSum returns an aggregator that summarizes a set of measurements as their
|
||||
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
|
||||
// the measurements were made in.
|
||||
func newSum[N int64 | float64](monotonic bool) *sum[N] {
|
||||
return &sum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// sum summarizes a set of measurements made as their arithmetic sum.
|
||||
type sum[N int64 | float64] struct {
|
||||
*valueMap[N]
|
||||
|
||||
monotonic bool
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.DeltaTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
// Do not report stale values.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.CumulativeTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
// overload the system.
|
||||
i++
|
||||
}
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
// newPrecomputedSum returns an aggregator that summarizes a set of
|
||||
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// the aggregation cycle the measurements were made in.
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool) *precomputedSum[N] {
|
||||
return &precomputedSum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// precomputedSum summarizes a set of observatrions as their arithmetic sum.
|
||||
type precomputedSum[N int64 | float64] struct {
|
||||
*valueMap[N]
|
||||
|
||||
monotonic bool
|
||||
start time.Time
|
||||
|
||||
reported map[attribute.Set]N
|
||||
}
|
||||
|
||||
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
newReported := make(map[attribute.Set]N)
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.DeltaTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
delta := value - s.reported[attr]
|
||||
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = delta
|
||||
|
||||
newReported[attr] = value
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets are forgotten.
|
||||
s.reported = newReported
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
sData, _ := (*dest).(metricdata.Sum[N])
|
||||
sData.Temporality = metricdata.CumulativeTemporality
|
||||
sData.IsMonotonic = s.monotonic
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := len(s.values)
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
||||
return n
|
||||
}
|
Reference in New Issue
Block a user