mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-15 07:57:07 +08:00
vendor: update buildkit to v0.18.0-rc1
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
87
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
87
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
@ -19,6 +8,7 @@ import (
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
@ -44,42 +34,73 @@ type Builder[N int64 | float64] struct {
|
||||
// Filter is the attribute filter the aggregate function will use on the
|
||||
// input of measurements.
|
||||
Filter attribute.Filter
|
||||
// ReservoirFunc is the factory function used by aggregate functions to
|
||||
// create new exemplar reservoirs for a new seen attribute set.
|
||||
//
|
||||
// If this is not provided a default factory function that returns an
|
||||
// exemplar.Drop reservoir will be used.
|
||||
ReservoirFunc func() exemplar.FilteredReservoir[N]
|
||||
// AggregationLimit is the cardinality limit of measurement attributes. Any
|
||||
// measurement for new attributes once the limit has been reached will be
|
||||
// aggregated into a single aggregate for the "otel.metric.overflow"
|
||||
// attribute.
|
||||
//
|
||||
// If AggregationLimit is less than or equal to zero there will not be an
|
||||
// aggregation limit imposed (i.e. unlimited attribute sets).
|
||||
AggregationLimit int
|
||||
}
|
||||
|
||||
func (b Builder[N]) filter(f Measure[N]) Measure[N] {
|
||||
func (b Builder[N]) resFunc() func() exemplar.FilteredReservoir[N] {
|
||||
if b.ReservoirFunc != nil {
|
||||
return b.ReservoirFunc
|
||||
}
|
||||
|
||||
return exemplar.Drop
|
||||
}
|
||||
|
||||
type fltrMeasure[N int64 | float64] func(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue)
|
||||
|
||||
func (b Builder[N]) filter(f fltrMeasure[N]) Measure[N] {
|
||||
if b.Filter != nil {
|
||||
fltr := b.Filter // Copy to make it immutable after assignment.
|
||||
return func(ctx context.Context, n N, a attribute.Set) {
|
||||
fAttr, _ := a.Filter(fltr)
|
||||
f(ctx, n, fAttr)
|
||||
fAttr, dropped := a.Filter(fltr)
|
||||
f(ctx, n, fAttr, dropped)
|
||||
}
|
||||
}
|
||||
return f
|
||||
return func(ctx context.Context, n N, a attribute.Set) {
|
||||
f(ctx, n, a, nil)
|
||||
}
|
||||
}
|
||||
|
||||
// LastValue returns a last-value aggregate function input and output.
|
||||
//
|
||||
// The Builder.Temporality is ignored and delta is use always.
|
||||
func (b Builder[N]) LastValue() (Measure[N], ComputeAggregation) {
|
||||
// Delta temporality is the only temporality that makes semantic sense for
|
||||
// a last-value aggregate.
|
||||
lv := newLastValue[N]()
|
||||
lv := newLastValue[N](b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(lv.measure), lv.delta
|
||||
default:
|
||||
return b.filter(lv.measure), lv.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
return b.filter(lv.measure), func(dest *metricdata.Aggregation) int {
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory
|
||||
// reuse of the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
lv.computeAggregation(&gData.DataPoints)
|
||||
*dest = gData
|
||||
|
||||
return len(gData.DataPoints)
|
||||
// PrecomputedLastValue returns a last-value aggregate function input and
|
||||
// output. The aggregation returned from the returned ComputeAggregation
|
||||
// function will always only return values from the previous collection cycle.
|
||||
func (b Builder[N]) PrecomputedLastValue() (Measure[N], ComputeAggregation) {
|
||||
lv := newPrecomputedLastValue[N](b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(lv.measure), lv.delta
|
||||
default:
|
||||
return b.filter(lv.measure), lv.cumulative
|
||||
}
|
||||
}
|
||||
|
||||
// PrecomputedSum returns a sum aggregate function input and output. The
|
||||
// arguments passed to the input are expected to be the precomputed sum values.
|
||||
func (b Builder[N]) PrecomputedSum(monotonic bool) (Measure[N], ComputeAggregation) {
|
||||
s := newPrecomputedSum[N](monotonic)
|
||||
s := newPrecomputedSum[N](monotonic, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(s.measure), s.delta
|
||||
@ -90,7 +111,7 @@ func (b Builder[N]) PrecomputedSum(monotonic bool) (Measure[N], ComputeAggregati
|
||||
|
||||
// Sum returns a sum aggregate function input and output.
|
||||
func (b Builder[N]) Sum(monotonic bool) (Measure[N], ComputeAggregation) {
|
||||
s := newSum[N](monotonic)
|
||||
s := newSum[N](monotonic, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(s.measure), s.delta
|
||||
@ -102,7 +123,7 @@ func (b Builder[N]) Sum(monotonic bool) (Measure[N], ComputeAggregation) {
|
||||
// ExplicitBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
h := newHistogram[N](boundaries, noMinMax, noSum)
|
||||
h := newHistogram[N](boundaries, noMinMax, noSum, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(h.measure), h.delta
|
||||
@ -114,7 +135,7 @@ func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSu
|
||||
// ExponentialBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExponentialBucketHistogram(maxSize, maxScale int32, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
h := newExponentialHistogram[N](maxSize, maxScale, noMinMax, noSum)
|
||||
h := newExponentialHistogram[N](maxSize, maxScale, noMinMax, noSum, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
return b.filter(h.measure), h.delta
|
||||
|
13
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/doc.go
generated
vendored
13
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/doc.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// Package aggregate provides aggregate types used compute aggregations and
|
||||
// cycle the state of metric measurements made by the SDK. These types and
|
||||
|
42
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exemplar.go
generated
vendored
Normal file
42
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exemplar.go
generated
vendored
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"sync"
|
||||
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
var exemplarPool = sync.Pool{
|
||||
New: func() any { return new([]exemplar.Exemplar) },
|
||||
}
|
||||
|
||||
func collectExemplars[N int64 | float64](out *[]metricdata.Exemplar[N], f func(*[]exemplar.Exemplar)) {
|
||||
dest := exemplarPool.Get().(*[]exemplar.Exemplar)
|
||||
defer func() {
|
||||
*dest = (*dest)[:0]
|
||||
exemplarPool.Put(dest)
|
||||
}()
|
||||
|
||||
*dest = reset(*dest, len(*out), cap(*out))
|
||||
|
||||
f(dest)
|
||||
|
||||
*out = reset(*out, len(*dest), cap(*dest))
|
||||
for i, e := range *dest {
|
||||
(*out)[i].FilteredAttributes = e.FilteredAttributes
|
||||
(*out)[i].Time = e.Time
|
||||
(*out)[i].SpanID = e.SpanID
|
||||
(*out)[i].TraceID = e.TraceID
|
||||
|
||||
switch e.Value.Type() {
|
||||
case exemplar.Int64ValueType:
|
||||
(*out)[i].Value = N(e.Value.Int64())
|
||||
case exemplar.Float64ValueType:
|
||||
(*out)[i].Value = N(e.Value.Float64())
|
||||
}
|
||||
}
|
||||
}
|
104
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
104
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
@ -23,6 +12,7 @@ import (
|
||||
|
||||
"go.opentelemetry.io/otel"
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
@ -40,6 +30,9 @@ const (
|
||||
|
||||
// expoHistogramDataPoint is a single data point in an exponential histogram.
|
||||
type expoHistogramDataPoint[N int64 | float64] struct {
|
||||
attrs attribute.Set
|
||||
res exemplar.FilteredReservoir[N]
|
||||
|
||||
count uint64
|
||||
min N
|
||||
max N
|
||||
@ -56,7 +49,7 @@ type expoHistogramDataPoint[N int64 | float64] struct {
|
||||
zeroCount uint64
|
||||
}
|
||||
|
||||
func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
|
||||
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
|
||||
f := math.MaxFloat64
|
||||
max := N(f) // if N is int64, max will overflow to -9223372036854775808
|
||||
min := N(-f)
|
||||
@ -65,6 +58,7 @@ func newExpoHistogramDataPoint[N int64 | float64](maxSize, maxScale int, noMinMa
|
||||
min = N(minInt64)
|
||||
}
|
||||
return &expoHistogramDataPoint[N]{
|
||||
attrs: attrs,
|
||||
min: max,
|
||||
max: min,
|
||||
maxSize: maxSize,
|
||||
@ -288,14 +282,16 @@ func (b *expoBuckets) downscale(delta int) {
|
||||
// newExponentialHistogram returns an Aggregator that summarizes a set of
|
||||
// measurements as an exponential histogram. Each histogram is scoped by attributes
|
||||
// and the aggregation cycle the measurements were made in.
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool) *expoHistogram[N] {
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *expoHistogram[N] {
|
||||
return &expoHistogram[N]{
|
||||
noSum: noSum,
|
||||
noMinMax: noMinMax,
|
||||
maxSize: int(maxSize),
|
||||
maxScale: int(maxScale),
|
||||
|
||||
values: make(map[attribute.Set]*expoHistogramDataPoint[N]),
|
||||
newRes: r,
|
||||
limit: newLimiter[*expoHistogramDataPoint[N]](limit),
|
||||
values: make(map[attribute.Distinct]*expoHistogramDataPoint[N]),
|
||||
|
||||
start: now(),
|
||||
}
|
||||
@ -309,13 +305,15 @@ type expoHistogram[N int64 | float64] struct {
|
||||
maxSize int
|
||||
maxScale int
|
||||
|
||||
values map[attribute.Set]*expoHistogramDataPoint[N]
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
limit limiter[*expoHistogramDataPoint[N]]
|
||||
values map[attribute.Distinct]*expoHistogramDataPoint[N]
|
||||
valuesMu sync.Mutex
|
||||
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
// Ignore NaN and infinity.
|
||||
if math.IsInf(float64(value), 0) || math.IsNaN(float64(value)) {
|
||||
return
|
||||
@ -324,12 +322,16 @@ func (e *expoHistogram[N]) measure(_ context.Context, value N, attr attribute.Se
|
||||
e.valuesMu.Lock()
|
||||
defer e.valuesMu.Unlock()
|
||||
|
||||
v, ok := e.values[attr]
|
||||
attr := e.limit.Attributes(fltrAttr, e.values)
|
||||
v, ok := e.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
v = newExpoHistogramDataPoint[N](e.maxSize, e.maxScale, e.noMinMax, e.noSum)
|
||||
e.values[attr] = v
|
||||
v = newExpoHistogramDataPoint[N](attr, e.maxSize, e.maxScale, e.noMinMax, e.noSum)
|
||||
v.res = e.newRes()
|
||||
|
||||
e.values[attr.Equivalent()] = v
|
||||
}
|
||||
v.record(value)
|
||||
v.res.Offer(ctx, value, droppedAttr)
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
|
||||
@ -347,33 +349,38 @@ func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range e.values {
|
||||
hDPts[i].Attributes = a
|
||||
for _, val := range e.values {
|
||||
hDPts[i].Attributes = val.attrs
|
||||
hDPts[i].StartTime = e.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Scale = int32(b.scale)
|
||||
hDPts[i].ZeroCount = b.zeroCount
|
||||
hDPts[i].Count = val.count
|
||||
hDPts[i].Scale = int32(val.scale)
|
||||
hDPts[i].ZeroCount = val.zeroCount
|
||||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts)
|
||||
hDPts[i].PositiveBucket.Offset = int32(val.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts))
|
||||
hDPts[i].NegativeBucket.Offset = int32(val.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
||||
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
||||
|
||||
if !e.noSum {
|
||||
hDPts[i].Sum = b.sum
|
||||
hDPts[i].Sum = val.sum
|
||||
}
|
||||
if !e.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
||||
}
|
||||
|
||||
delete(e.values, a)
|
||||
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
||||
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets do not report.
|
||||
clear(e.values)
|
||||
|
||||
e.start = t
|
||||
h.DataPoints = hDPts
|
||||
*dest = h
|
||||
@ -395,30 +402,33 @@ func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range e.values {
|
||||
hDPts[i].Attributes = a
|
||||
for _, val := range e.values {
|
||||
hDPts[i].Attributes = val.attrs
|
||||
hDPts[i].StartTime = e.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Scale = int32(b.scale)
|
||||
hDPts[i].ZeroCount = b.zeroCount
|
||||
hDPts[i].Count = val.count
|
||||
hDPts[i].Scale = int32(val.scale)
|
||||
hDPts[i].ZeroCount = val.zeroCount
|
||||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = int32(b.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(b.posBuckets.counts), len(b.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, b.posBuckets.counts)
|
||||
hDPts[i].PositiveBucket.Offset = int32(val.posBuckets.startBin)
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
||||
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = int32(b.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(b.negBuckets.counts), len(b.negBuckets.counts))
|
||||
hDPts[i].NegativeBucket.Offset = int32(val.negBuckets.startBin)
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
||||
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
||||
|
||||
if !e.noSum {
|
||||
hDPts[i].Sum = b.sum
|
||||
hDPts[i].Sum = val.sum
|
||||
}
|
||||
if !e.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
||||
}
|
||||
|
||||
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
||||
|
||||
i++
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
|
106
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
106
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
@ -1,30 +1,24 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"slices"
|
||||
"sort"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
type buckets[N int64 | float64] struct {
|
||||
attrs attribute.Set
|
||||
res exemplar.FilteredReservoir[N]
|
||||
|
||||
counts []uint64
|
||||
count uint64
|
||||
total N
|
||||
@ -32,8 +26,8 @@ type buckets[N int64 | float64] struct {
|
||||
}
|
||||
|
||||
// newBuckets returns buckets with n bins.
|
||||
func newBuckets[N int64 | float64](n int) *buckets[N] {
|
||||
return &buckets[N]{counts: make([]uint64, n)}
|
||||
func newBuckets[N int64 | float64](attrs attribute.Set, n int) *buckets[N] {
|
||||
return &buckets[N]{attrs: attrs, counts: make([]uint64, n)}
|
||||
}
|
||||
|
||||
func (b *buckets[N]) sum(value N) { b.total += value }
|
||||
@ -54,28 +48,31 @@ type histValues[N int64 | float64] struct {
|
||||
noSum bool
|
||||
bounds []float64
|
||||
|
||||
values map[attribute.Set]*buckets[N]
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
limit limiter[*buckets[N]]
|
||||
values map[attribute.Distinct]*buckets[N]
|
||||
valuesMu sync.Mutex
|
||||
}
|
||||
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool) *histValues[N] {
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
|
||||
// The responsibility of keeping all buckets correctly associated with the
|
||||
// passed boundaries is ultimately this type's responsibility. Make a copy
|
||||
// here so we can always guarantee this. Or, in the case of failure, have
|
||||
// complete control over the fix.
|
||||
b := make([]float64, len(bounds))
|
||||
copy(b, bounds)
|
||||
sort.Float64s(b)
|
||||
b := slices.Clone(bounds)
|
||||
slices.Sort(b)
|
||||
return &histValues[N]{
|
||||
noSum: noSum,
|
||||
bounds: b,
|
||||
values: make(map[attribute.Set]*buckets[N]),
|
||||
newRes: r,
|
||||
limit: newLimiter[*buckets[N]](limit),
|
||||
values: make(map[attribute.Distinct]*buckets[N]),
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregate records the measurement value, scoped by attr, and aggregates it
|
||||
// into a histogram.
|
||||
func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
// This search will return an index in the range [0, len(s.bounds)], where
|
||||
// it will return len(s.bounds) if value is greater than the last element
|
||||
// of s.bounds. This aligns with the buckets in that the length of buckets
|
||||
@ -86,7 +83,8 @@ func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set)
|
||||
s.valuesMu.Lock()
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
b, ok := s.values[attr]
|
||||
attr := s.limit.Attributes(fltrAttr, s.values)
|
||||
b, ok := s.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
// N+1 buckets. For example:
|
||||
//
|
||||
@ -95,22 +93,25 @@ func (s *histValues[N]) measure(_ context.Context, value N, attr attribute.Set)
|
||||
// Then,
|
||||
//
|
||||
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
|
||||
b = newBuckets[N](len(s.bounds) + 1)
|
||||
b = newBuckets[N](attr, len(s.bounds)+1)
|
||||
b.res = s.newRes()
|
||||
|
||||
// Ensure min and max are recorded values (not zero), for new buckets.
|
||||
b.min, b.max = value, value
|
||||
s.values[attr] = b
|
||||
s.values[attr.Equivalent()] = b
|
||||
}
|
||||
b.bin(idx, value)
|
||||
if !s.noSum {
|
||||
b.sum(value)
|
||||
}
|
||||
b.res.Offer(ctx, value, droppedAttr)
|
||||
}
|
||||
|
||||
// newHistogram returns an Aggregator that summarizes a set of measurements as
|
||||
// an histogram.
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool) *histogram[N] {
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
|
||||
return &histogram[N]{
|
||||
histValues: newHistValues[N](boundaries, noSum),
|
||||
histValues: newHistValues[N](boundaries, noSum, limit, r),
|
||||
noMinMax: noMinMax,
|
||||
start: now(),
|
||||
}
|
||||
@ -137,34 +138,35 @@ func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
// Do not allow modification of our copy of bounds.
|
||||
bounds := make([]float64, len(s.bounds))
|
||||
copy(bounds, s.bounds)
|
||||
bounds := slices.Clone(s.bounds)
|
||||
|
||||
n := len(s.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range s.values {
|
||||
hDPts[i].Attributes = a
|
||||
for _, val := range s.values {
|
||||
hDPts[i].Attributes = val.attrs
|
||||
hDPts[i].StartTime = s.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Count = val.count
|
||||
hDPts[i].Bounds = bounds
|
||||
hDPts[i].BucketCounts = b.counts
|
||||
hDPts[i].BucketCounts = val.counts
|
||||
|
||||
if !s.noSum {
|
||||
hDPts[i].Sum = b.total
|
||||
hDPts[i].Sum = val.total
|
||||
}
|
||||
|
||||
if !s.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
||||
}
|
||||
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, a)
|
||||
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
||||
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets do not report.
|
||||
clear(s.values)
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
@ -186,37 +188,37 @@ func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
defer s.valuesMu.Unlock()
|
||||
|
||||
// Do not allow modification of our copy of bounds.
|
||||
bounds := make([]float64, len(s.bounds))
|
||||
copy(bounds, s.bounds)
|
||||
bounds := slices.Clone(s.bounds)
|
||||
|
||||
n := len(s.values)
|
||||
hDPts := reset(h.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for a, b := range s.values {
|
||||
for _, val := range s.values {
|
||||
hDPts[i].Attributes = val.attrs
|
||||
hDPts[i].StartTime = s.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = val.count
|
||||
hDPts[i].Bounds = bounds
|
||||
|
||||
// The HistogramDataPoint field values returned need to be copies of
|
||||
// the buckets value as we will keep updating them.
|
||||
//
|
||||
// TODO (#3047): Making copies for bounds and counts incurs a large
|
||||
// memory allocation footprint. Alternatives should be explored.
|
||||
counts := make([]uint64, len(b.counts))
|
||||
copy(counts, b.counts)
|
||||
|
||||
hDPts[i].Attributes = a
|
||||
hDPts[i].StartTime = s.start
|
||||
hDPts[i].Time = t
|
||||
hDPts[i].Count = b.count
|
||||
hDPts[i].Bounds = bounds
|
||||
hDPts[i].BucketCounts = counts
|
||||
hDPts[i].BucketCounts = slices.Clone(val.counts)
|
||||
|
||||
if !s.noSum {
|
||||
hDPts[i].Sum = b.total
|
||||
hDPts[i].Sum = val.total
|
||||
}
|
||||
|
||||
if !s.noMinMax {
|
||||
hDPts[i].Min = metricdata.NewExtrema(b.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(b.max)
|
||||
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
||||
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
||||
}
|
||||
|
||||
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
||||
|
||||
i++
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
|
158
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
158
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
@ -20,49 +9,154 @@ import (
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
// datapoint is timestamped measurement data.
|
||||
type datapoint[N int64 | float64] struct {
|
||||
timestamp time.Time
|
||||
value N
|
||||
attrs attribute.Set
|
||||
value N
|
||||
res exemplar.FilteredReservoir[N]
|
||||
}
|
||||
|
||||
func newLastValue[N int64 | float64]() *lastValue[N] {
|
||||
return &lastValue[N]{values: make(map[attribute.Set]datapoint[N])}
|
||||
func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *lastValue[N] {
|
||||
return &lastValue[N]{
|
||||
newRes: r,
|
||||
limit: newLimiter[datapoint[N]](limit),
|
||||
values: make(map[attribute.Distinct]datapoint[N]),
|
||||
start: now(),
|
||||
}
|
||||
}
|
||||
|
||||
// lastValue summarizes a set of measurements as the last one made.
|
||||
type lastValue[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
|
||||
values map[attribute.Set]datapoint[N]
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
limit limiter[datapoint[N]]
|
||||
values map[attribute.Distinct]datapoint[N]
|
||||
start time.Time
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) measure(ctx context.Context, value N, attr attribute.Set) {
|
||||
d := datapoint[N]{timestamp: now(), value: value}
|
||||
s.Lock()
|
||||
s.values[attr] = d
|
||||
s.Unlock()
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) computeAggregation(dest *[]metricdata.DataPoint[N]) {
|
||||
func (s *lastValue[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
attr := s.limit.Attributes(fltrAttr, s.values)
|
||||
d, ok := s.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
d.res = s.newRes()
|
||||
}
|
||||
|
||||
d.attrs = attr
|
||||
d.value = value
|
||||
d.res.Offer(ctx, value, droppedAttr)
|
||||
|
||||
s.values[attr.Equivalent()] = d
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory reuse of
|
||||
// the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := s.copyDpts(&gData.DataPoints, t)
|
||||
// Do not report stale values.
|
||||
clear(s.values)
|
||||
// Update start time for delta temporality.
|
||||
s.start = t
|
||||
|
||||
*dest = gData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *lastValue[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory reuse of
|
||||
// the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := s.copyDpts(&gData.DataPoints, t)
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
// overload the system.
|
||||
*dest = gData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
// copyDpts copies the datapoints held by s into dest. The number of datapoints
|
||||
// copied is returned.
|
||||
func (s *lastValue[N]) copyDpts(dest *[]metricdata.DataPoint[N], t time.Time) int {
|
||||
n := len(s.values)
|
||||
*dest = reset(*dest, n, n)
|
||||
|
||||
var i int
|
||||
for a, v := range s.values {
|
||||
(*dest)[i].Attributes = a
|
||||
// The event time is the only meaningful timestamp, StartTime is
|
||||
// ignored.
|
||||
(*dest)[i].Time = v.timestamp
|
||||
for _, v := range s.values {
|
||||
(*dest)[i].Attributes = v.attrs
|
||||
(*dest)[i].StartTime = s.start
|
||||
(*dest)[i].Time = t
|
||||
(*dest)[i].Value = v.value
|
||||
// Do not report stale values.
|
||||
delete(s.values, a)
|
||||
collectExemplars(&(*dest)[i].Exemplars, v.res.Collect)
|
||||
i++
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// newPrecomputedLastValue returns an aggregator that summarizes a set of
|
||||
// observations as the last one made.
|
||||
func newPrecomputedLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *precomputedLastValue[N] {
|
||||
return &precomputedLastValue[N]{lastValue: newLastValue[N](limit, r)}
|
||||
}
|
||||
|
||||
// precomputedLastValue summarizes a set of observations as the last one made.
|
||||
type precomputedLastValue[N int64 | float64] struct {
|
||||
*lastValue[N]
|
||||
}
|
||||
|
||||
func (s *precomputedLastValue[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory reuse of
|
||||
// the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := s.copyDpts(&gData.DataPoints, t)
|
||||
// Do not report stale values.
|
||||
clear(s.values)
|
||||
// Update start time for delta temporality.
|
||||
s.start = t
|
||||
|
||||
*dest = gData
|
||||
|
||||
return n
|
||||
}
|
||||
|
||||
func (s *precomputedLastValue[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
// Ignore if dest is not a metricdata.Gauge. The chance for memory reuse of
|
||||
// the DataPoints is missed (better luck next time).
|
||||
gData, _ := (*dest).(metricdata.Gauge[N])
|
||||
|
||||
s.Lock()
|
||||
defer s.Unlock()
|
||||
|
||||
n := s.copyDpts(&gData.DataPoints, t)
|
||||
// Do not report stale values.
|
||||
clear(s.values)
|
||||
*dest = gData
|
||||
|
||||
return n
|
||||
}
|
||||
|
42
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/limit.go
generated
vendored
Normal file
42
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/limit.go
generated
vendored
Normal file
@ -0,0 +1,42 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import "go.opentelemetry.io/otel/attribute"
|
||||
|
||||
// overflowSet is the attribute set used to record a measurement when adding
|
||||
// another distinct attribute set to the aggregate would exceed the aggregate
|
||||
// limit.
|
||||
var overflowSet = attribute.NewSet(attribute.Bool("otel.metric.overflow", true))
|
||||
|
||||
// limiter limits aggregate values.
|
||||
type limiter[V any] struct {
|
||||
// aggLimit is the maximum number of metric streams that can be aggregated.
|
||||
//
|
||||
// Any metric stream with attributes distinct from any set already
|
||||
// aggregated once the aggLimit will be meet will instead be aggregated
|
||||
// into an "overflow" metric stream. That stream will only contain the
|
||||
// "otel.metric.overflow"=true attribute.
|
||||
aggLimit int
|
||||
}
|
||||
|
||||
// newLimiter returns a new Limiter with the provided aggregation limit.
|
||||
func newLimiter[V any](aggregation int) limiter[V] {
|
||||
return limiter[V]{aggLimit: aggregation}
|
||||
}
|
||||
|
||||
// Attributes checks if adding a measurement for attrs will exceed the
|
||||
// aggregation cardinality limit for the existing measurements. If it will,
|
||||
// overflowSet is returned. Otherwise, if it will not exceed the limit, or the
|
||||
// limit is not set (limit <= 0), attr is returned.
|
||||
func (l limiter[V]) Attributes(attrs attribute.Set, measurements map[attribute.Distinct]V) attribute.Set {
|
||||
if l.aggLimit > 0 {
|
||||
_, exists := measurements[attrs.Equivalent()]
|
||||
if !exists && len(measurements) >= l.aggLimit-1 {
|
||||
return overflowSet
|
||||
}
|
||||
}
|
||||
|
||||
return attrs
|
||||
}
|
104
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
104
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
@ -20,31 +9,55 @@ import (
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
type sumValue[N int64 | float64] struct {
|
||||
n N
|
||||
res exemplar.FilteredReservoir[N]
|
||||
attrs attribute.Set
|
||||
}
|
||||
|
||||
// valueMap is the storage for sums.
|
||||
type valueMap[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
values map[attribute.Set]N
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
limit limiter[sumValue[N]]
|
||||
values map[attribute.Distinct]sumValue[N]
|
||||
}
|
||||
|
||||
func newValueMap[N int64 | float64]() *valueMap[N] {
|
||||
return &valueMap[N]{values: make(map[attribute.Set]N)}
|
||||
func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
|
||||
return &valueMap[N]{
|
||||
newRes: r,
|
||||
limit: newLimiter[sumValue[N]](limit),
|
||||
values: make(map[attribute.Distinct]sumValue[N]),
|
||||
}
|
||||
}
|
||||
|
||||
func (s *valueMap[N]) measure(_ context.Context, value N, attr attribute.Set) {
|
||||
func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
s.Lock()
|
||||
s.values[attr] += value
|
||||
s.Unlock()
|
||||
defer s.Unlock()
|
||||
|
||||
attr := s.limit.Attributes(fltrAttr, s.values)
|
||||
v, ok := s.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
v.res = s.newRes()
|
||||
}
|
||||
|
||||
v.attrs = attr
|
||||
v.n += value
|
||||
v.res.Offer(ctx, value, droppedAttr)
|
||||
|
||||
s.values[attr.Equivalent()] = v
|
||||
}
|
||||
|
||||
// newSum returns an aggregator that summarizes a set of measurements as their
|
||||
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
|
||||
// the measurements were made in.
|
||||
func newSum[N int64 | float64](monotonic bool) *sum[N] {
|
||||
func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
|
||||
return &sum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
valueMap: newValueMap[N](limit, r),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
@ -74,15 +87,16 @@ func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
for _, val := range s.values {
|
||||
dPts[i].Attributes = val.attrs
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
// Do not report stale values.
|
||||
delete(s.values, attr)
|
||||
dPts[i].Value = val.n
|
||||
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
|
||||
i++
|
||||
}
|
||||
// Do not report stale values.
|
||||
clear(s.values)
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
|
||||
@ -108,11 +122,12 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
for _, value := range s.values {
|
||||
dPts[i].Attributes = value.attrs
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
dPts[i].Value = value.n
|
||||
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
|
||||
// TODO (#3006): This will use an unbounded amount of memory if there
|
||||
// are unbounded number of attribute sets being aggregated. Attribute
|
||||
// sets that become "stale" need to be forgotten so this will not
|
||||
@ -129,9 +144,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
// newPrecomputedSum returns an aggregator that summarizes a set of
|
||||
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// the aggregation cycle the measurements were made in.
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool) *precomputedSum[N] {
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
|
||||
return &precomputedSum[N]{
|
||||
valueMap: newValueMap[N](),
|
||||
valueMap: newValueMap[N](limit, r),
|
||||
monotonic: monotonic,
|
||||
start: now(),
|
||||
}
|
||||
@ -144,12 +159,12 @@ type precomputedSum[N int64 | float64] struct {
|
||||
monotonic bool
|
||||
start time.Time
|
||||
|
||||
reported map[attribute.Set]N
|
||||
reported map[attribute.Distinct]N
|
||||
}
|
||||
|
||||
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
t := now()
|
||||
newReported := make(map[attribute.Set]N)
|
||||
newReported := make(map[attribute.Distinct]N)
|
||||
|
||||
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
|
||||
// use the zero-value sData and hope for better alignment next cycle.
|
||||
@ -164,20 +179,20 @@ func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
delta := value - s.reported[attr]
|
||||
for key, value := range s.values {
|
||||
delta := value.n - s.reported[key]
|
||||
|
||||
dPts[i].Attributes = attr
|
||||
dPts[i].Attributes = value.attrs
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = delta
|
||||
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
|
||||
|
||||
newReported[attr] = value
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
newReported[key] = value.n
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets are forgotten.
|
||||
// Unused attribute sets do not report.
|
||||
clear(s.values)
|
||||
s.reported = newReported
|
||||
// The delta collection cycle resets.
|
||||
s.start = t
|
||||
@ -204,16 +219,17 @@ func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
|
||||
dPts := reset(sData.DataPoints, n, n)
|
||||
|
||||
var i int
|
||||
for attr, value := range s.values {
|
||||
dPts[i].Attributes = attr
|
||||
for _, val := range s.values {
|
||||
dPts[i].Attributes = val.attrs
|
||||
dPts[i].StartTime = s.start
|
||||
dPts[i].Time = t
|
||||
dPts[i].Value = value
|
||||
dPts[i].Value = val.n
|
||||
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
|
||||
|
||||
// Unused attribute sets do not report.
|
||||
delete(s.values, attr)
|
||||
i++
|
||||
}
|
||||
// Unused attribute sets do not report.
|
||||
clear(s.values)
|
||||
|
||||
sData.DataPoints = dPts
|
||||
*dest = sData
|
||||
|
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/doc.go
generated
vendored
Normal file
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/doc.go
generated
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// Package exemplar provides an implementation of the OpenTelemetry exemplar
|
||||
// reservoir to be used in metric collection pipelines.
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
23
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/drop.go
generated
vendored
Normal file
23
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/drop.go
generated
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Drop returns a [FilteredReservoir] that drops all measurements it is offered.
|
||||
func Drop[N int64 | float64]() FilteredReservoir[N] { return &dropRes[N]{} }
|
||||
|
||||
type dropRes[N int64 | float64] struct{}
|
||||
|
||||
// Offer does nothing, all measurements offered will be dropped.
|
||||
func (r *dropRes[N]) Offer(context.Context, N, []attribute.KeyValue) {}
|
||||
|
||||
// Collect resets dest. No exemplars will ever be returned.
|
||||
func (r *dropRes[N]) Collect(dest *[]Exemplar) {
|
||||
*dest = (*dest)[:0]
|
||||
}
|
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/exemplar.go
generated
vendored
Normal file
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/exemplar.go
generated
vendored
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Exemplar is a measurement sampled from a timeseries providing a typical
|
||||
// example.
|
||||
type Exemplar struct {
|
||||
// FilteredAttributes are the attributes recorded with the measurement but
|
||||
// filtered out of the timeseries' aggregated data.
|
||||
FilteredAttributes []attribute.KeyValue
|
||||
// Time is the time when the measurement was recorded.
|
||||
Time time.Time
|
||||
// Value is the measured value.
|
||||
Value Value
|
||||
// SpanID is the ID of the span that was active during the measurement. If
|
||||
// no span was active or the span was not sampled this will be empty.
|
||||
SpanID []byte `json:",omitempty"`
|
||||
// TraceID is the ID of the trace the active span belonged to during the
|
||||
// measurement. If no span was active or the span was not sampled this will
|
||||
// be empty.
|
||||
TraceID []byte `json:",omitempty"`
|
||||
}
|
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filter.go
generated
vendored
Normal file
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filter.go
generated
vendored
Normal file
@ -0,0 +1,29 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"go.opentelemetry.io/otel/trace"
|
||||
)
|
||||
|
||||
// Filter determines if a measurement should be offered.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
type Filter func(context.Context) bool
|
||||
|
||||
// SampledFilter is a [Filter] that will only offer measurements
|
||||
// if the passed context associated with the measurement contains a sampled
|
||||
// [go.opentelemetry.io/otel/trace.SpanContext].
|
||||
func SampledFilter(ctx context.Context) bool {
|
||||
return trace.SpanContextFromContext(ctx).IsSampled()
|
||||
}
|
||||
|
||||
// AlwaysOnFilter is a [Filter] that always offers measurements.
|
||||
func AlwaysOnFilter(ctx context.Context) bool {
|
||||
return true
|
||||
}
|
49
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filtered_reservoir.go
generated
vendored
Normal file
49
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filtered_reservoir.go
generated
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// FilteredReservoir wraps a [Reservoir] with a filter.
|
||||
type FilteredReservoir[N int64 | float64] interface {
|
||||
// Offer accepts the parameters associated with a measurement. The
|
||||
// parameters will be stored as an exemplar if the filter decides to
|
||||
// sample the measurement.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
Offer(ctx context.Context, val N, attr []attribute.KeyValue)
|
||||
// Collect returns all the held exemplars in the reservoir.
|
||||
Collect(dest *[]Exemplar)
|
||||
}
|
||||
|
||||
// filteredReservoir handles the pre-sampled exemplar of measurements made.
|
||||
type filteredReservoir[N int64 | float64] struct {
|
||||
filter Filter
|
||||
reservoir Reservoir
|
||||
}
|
||||
|
||||
// NewFilteredReservoir creates a [FilteredReservoir] which only offers values
|
||||
// that are allowed by the filter.
|
||||
func NewFilteredReservoir[N int64 | float64](f Filter, r Reservoir) FilteredReservoir[N] {
|
||||
return &filteredReservoir[N]{
|
||||
filter: f,
|
||||
reservoir: r,
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredReservoir[N]) Offer(ctx context.Context, val N, attr []attribute.KeyValue) {
|
||||
if f.filter(ctx) {
|
||||
// only record the current time if we are sampling this measurment.
|
||||
f.reservoir.Offer(ctx, time.Now(), NewValue(val), attr)
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredReservoir[N]) Collect(dest *[]Exemplar) { f.reservoir.Collect(dest) }
|
46
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/hist.go
generated
vendored
Normal file
46
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/hist.go
generated
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"slices"
|
||||
"sort"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Histogram returns a [Reservoir] that samples the last measurement that falls
|
||||
// within a histogram bucket. The histogram bucket upper-boundaries are define
|
||||
// by bounds.
|
||||
//
|
||||
// The passed bounds will be sorted by this function.
|
||||
func Histogram(bounds []float64) Reservoir {
|
||||
slices.Sort(bounds)
|
||||
return &histRes{
|
||||
bounds: bounds,
|
||||
storage: newStorage(len(bounds) + 1),
|
||||
}
|
||||
}
|
||||
|
||||
type histRes struct {
|
||||
*storage
|
||||
|
||||
// bounds are bucket bounds in ascending order.
|
||||
bounds []float64
|
||||
}
|
||||
|
||||
func (r *histRes) Offer(ctx context.Context, t time.Time, v Value, a []attribute.KeyValue) {
|
||||
var x float64
|
||||
switch v.Type() {
|
||||
case Int64ValueType:
|
||||
x = float64(v.Int64())
|
||||
case Float64ValueType:
|
||||
x = v.Float64()
|
||||
default:
|
||||
panic("unknown value type")
|
||||
}
|
||||
r.store[sort.SearchFloat64s(r.bounds, x)] = newMeasurement(ctx, t, v, a)
|
||||
}
|
191
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/rand.go
generated
vendored
Normal file
191
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/rand.go
generated
vendored
Normal file
@ -0,0 +1,191 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"math/rand"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
var (
|
||||
// rng is used to make sampling decisions.
|
||||
//
|
||||
// Do not use crypto/rand. There is no reason for the decrease in performance
|
||||
// given this is not a security sensitive decision.
|
||||
rng = rand.New(rand.NewSource(time.Now().UnixNano()))
|
||||
// Ensure concurrent safe accecess to rng and its underlying source.
|
||||
rngMu sync.Mutex
|
||||
)
|
||||
|
||||
// random returns, as a float64, a uniform pseudo-random number in the open
|
||||
// interval (0.0,1.0).
|
||||
func random() float64 {
|
||||
// TODO: This does not return a uniform number. rng.Float64 returns a
|
||||
// uniformly random int in [0,2^53) that is divided by 2^53. Meaning it
|
||||
// returns multiples of 2^-53, and not all floating point numbers between 0
|
||||
// and 1 (i.e. for values less than 2^-4 the 4 last bits of the significand
|
||||
// are always going to be 0).
|
||||
//
|
||||
// An alternative algorithm should be considered that will actually return
|
||||
// a uniform number in the interval (0,1). For example, since the default
|
||||
// rand source provides a uniform distribution for Int63, this can be
|
||||
// converted following the prototypical code of Mersenne Twister 64 (Takuji
|
||||
// Nishimura and Makoto Matsumoto:
|
||||
// http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/C-LANG/mt19937-64.c)
|
||||
//
|
||||
// (float64(rng.Int63()>>11) + 0.5) * (1.0 / 4503599627370496.0)
|
||||
//
|
||||
// There are likely many other methods to explore here as well.
|
||||
|
||||
rngMu.Lock()
|
||||
defer rngMu.Unlock()
|
||||
|
||||
f := rng.Float64()
|
||||
for f == 0 {
|
||||
f = rng.Float64()
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// FixedSize returns a [Reservoir] that samples at most k exemplars. If there
|
||||
// are k or less measurements made, the Reservoir will sample each one. If
|
||||
// there are more than k, the Reservoir will then randomly sample all
|
||||
// additional measurement with a decreasing probability.
|
||||
func FixedSize(k int) Reservoir {
|
||||
r := &randRes{storage: newStorage(k)}
|
||||
r.reset()
|
||||
return r
|
||||
}
|
||||
|
||||
type randRes struct {
|
||||
*storage
|
||||
|
||||
// count is the number of measurement seen.
|
||||
count int64
|
||||
// next is the next count that will store a measurement at a random index
|
||||
// once the reservoir has been filled.
|
||||
next int64
|
||||
// w is the largest random number in a distribution that is used to compute
|
||||
// the next next.
|
||||
w float64
|
||||
}
|
||||
|
||||
func (r *randRes) Offer(ctx context.Context, t time.Time, n Value, a []attribute.KeyValue) {
|
||||
// The following algorithm is "Algorithm L" from Li, Kim-Hung (4 December
|
||||
// 1994). "Reservoir-Sampling Algorithms of Time Complexity
|
||||
// O(n(1+log(N/n)))". ACM Transactions on Mathematical Software. 20 (4):
|
||||
// 481–493 (https://dl.acm.org/doi/10.1145/198429.198435).
|
||||
//
|
||||
// A high-level overview of "Algorithm L":
|
||||
// 0) Pre-calculate the random count greater than the storage size when
|
||||
// an exemplar will be replaced.
|
||||
// 1) Accept all measurements offered until the configured storage size is
|
||||
// reached.
|
||||
// 2) Loop:
|
||||
// a) When the pre-calculate count is reached, replace a random
|
||||
// existing exemplar with the offered measurement.
|
||||
// b) Calculate the next random count greater than the existing one
|
||||
// which will replace another exemplars
|
||||
//
|
||||
// The way a "replacement" count is computed is by looking at `n` number of
|
||||
// independent random numbers each corresponding to an offered measurement.
|
||||
// Of these numbers the smallest `k` (the same size as the storage
|
||||
// capacity) of them are kept as a subset. The maximum value in this
|
||||
// subset, called `w` is used to weight another random number generation
|
||||
// for the next count that will be considered.
|
||||
//
|
||||
// By weighting the next count computation like described, it is able to
|
||||
// perform a uniformly-weighted sampling algorithm based on the number of
|
||||
// samples the reservoir has seen so far. The sampling will "slow down" as
|
||||
// more and more samples are offered so as to reduce a bias towards those
|
||||
// offered just prior to the end of the collection.
|
||||
//
|
||||
// This algorithm is preferred because of its balance of simplicity and
|
||||
// performance. It will compute three random numbers (the bulk of
|
||||
// computation time) for each item that becomes part of the reservoir, but
|
||||
// it does not spend any time on items that do not. In particular it has an
|
||||
// asymptotic runtime of O(k(1 + log(n/k)) where n is the number of
|
||||
// measurements offered and k is the reservoir size.
|
||||
//
|
||||
// See https://en.wikipedia.org/wiki/Reservoir_sampling for an overview of
|
||||
// this and other reservoir sampling algorithms. See
|
||||
// https://github.com/MrAlias/reservoir-sampling for a performance
|
||||
// comparison of reservoir sampling algorithms.
|
||||
|
||||
if int(r.count) < cap(r.store) {
|
||||
r.store[r.count] = newMeasurement(ctx, t, n, a)
|
||||
} else {
|
||||
if r.count == r.next {
|
||||
// Overwrite a random existing measurement with the one offered.
|
||||
idx := int(rng.Int63n(int64(cap(r.store))))
|
||||
r.store[idx] = newMeasurement(ctx, t, n, a)
|
||||
r.advance()
|
||||
}
|
||||
}
|
||||
r.count++
|
||||
}
|
||||
|
||||
// reset resets r to the initial state.
|
||||
func (r *randRes) reset() {
|
||||
// This resets the number of exemplars known.
|
||||
r.count = 0
|
||||
// Random index inserts should only happen after the storage is full.
|
||||
r.next = int64(cap(r.store))
|
||||
|
||||
// Initial random number in the series used to generate r.next.
|
||||
//
|
||||
// This is set before r.advance to reset or initialize the random number
|
||||
// series. Without doing so it would always be 0 or never restart a new
|
||||
// random number series.
|
||||
//
|
||||
// This maps the uniform random number in (0,1) to a geometric distribution
|
||||
// over the same interval. The mean of the distribution is inversely
|
||||
// proportional to the storage capacity.
|
||||
r.w = math.Exp(math.Log(random()) / float64(cap(r.store)))
|
||||
|
||||
r.advance()
|
||||
}
|
||||
|
||||
// advance updates the count at which the offered measurement will overwrite an
|
||||
// existing exemplar.
|
||||
func (r *randRes) advance() {
|
||||
// Calculate the next value in the random number series.
|
||||
//
|
||||
// The current value of r.w is based on the max of a distribution of random
|
||||
// numbers (i.e. `w = max(u_1,u_2,...,u_k)` for `k` equal to the capacity
|
||||
// of the storage and each `u` in the interval (0,w)). To calculate the
|
||||
// next r.w we use the fact that when the next exemplar is selected to be
|
||||
// included in the storage an existing one will be dropped, and the
|
||||
// corresponding random number in the set used to calculate r.w will also
|
||||
// be replaced. The replacement random number will also be within (0,w),
|
||||
// therefore the next r.w will be based on the same distribution (i.e.
|
||||
// `max(u_1,u_2,...,u_k)`). Therefore, we can sample the next r.w by
|
||||
// computing the next random number `u` and take r.w as `w * u^(1/k)`.
|
||||
r.w *= math.Exp(math.Log(random()) / float64(cap(r.store)))
|
||||
// Use the new random number in the series to calculate the count of the
|
||||
// next measurement that will be stored.
|
||||
//
|
||||
// Given 0 < r.w < 1, each iteration will result in subsequent r.w being
|
||||
// smaller. This translates here into the next next being selected against
|
||||
// a distribution with a higher mean (i.e. the expected value will increase
|
||||
// and replacements become less likely)
|
||||
//
|
||||
// Important to note, the new r.next will always be at least 1 more than
|
||||
// the last r.next.
|
||||
r.next += int64(math.Log(random())/math.Log(1-r.w)) + 1
|
||||
}
|
||||
|
||||
func (r *randRes) Collect(dest *[]Exemplar) {
|
||||
r.storage.Collect(dest)
|
||||
// Call reset here even though it will reset r.count and restart the random
|
||||
// number series. This will persist any old exemplars as long as no new
|
||||
// measurements are offered, but it will also prioritize those new
|
||||
// measurements that are made over the older collection cycle ones.
|
||||
r.reset()
|
||||
}
|
32
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/reservoir.go
generated
vendored
Normal file
32
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/reservoir.go
generated
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Reservoir holds the sampled exemplar of measurements made.
|
||||
type Reservoir interface {
|
||||
// Offer accepts the parameters associated with a measurement. The
|
||||
// parameters will be stored as an exemplar if the Reservoir decides to
|
||||
// sample the measurement.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
//
|
||||
// The time t is the time when the measurement was made. The val and attr
|
||||
// parameters are the value and dropped (filtered) attributes of the
|
||||
// measurement respectively.
|
||||
Offer(ctx context.Context, t time.Time, val Value, attr []attribute.KeyValue)
|
||||
|
||||
// Collect returns all the held exemplars.
|
||||
//
|
||||
// The Reservoir state is preserved after this call.
|
||||
Collect(dest *[]Exemplar)
|
||||
}
|
95
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/storage.go
generated
vendored
Normal file
95
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/storage.go
generated
vendored
Normal file
@ -0,0 +1,95 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/trace"
|
||||
)
|
||||
|
||||
// storage is an exemplar storage for [Reservoir] implementations.
|
||||
type storage struct {
|
||||
// store are the measurements sampled.
|
||||
//
|
||||
// This does not use []metricdata.Exemplar because it potentially would
|
||||
// require an allocation for trace and span IDs in the hot path of Offer.
|
||||
store []measurement
|
||||
}
|
||||
|
||||
func newStorage(n int) *storage {
|
||||
return &storage{store: make([]measurement, n)}
|
||||
}
|
||||
|
||||
// Collect returns all the held exemplars.
|
||||
//
|
||||
// The Reservoir state is preserved after this call.
|
||||
func (r *storage) Collect(dest *[]Exemplar) {
|
||||
*dest = reset(*dest, len(r.store), len(r.store))
|
||||
var n int
|
||||
for _, m := range r.store {
|
||||
if !m.valid {
|
||||
continue
|
||||
}
|
||||
|
||||
m.Exemplar(&(*dest)[n])
|
||||
n++
|
||||
}
|
||||
*dest = (*dest)[:n]
|
||||
}
|
||||
|
||||
// measurement is a measurement made by a telemetry system.
|
||||
type measurement struct {
|
||||
// FilteredAttributes are the attributes dropped during the measurement.
|
||||
FilteredAttributes []attribute.KeyValue
|
||||
// Time is the time when the measurement was made.
|
||||
Time time.Time
|
||||
// Value is the value of the measurement.
|
||||
Value Value
|
||||
// SpanContext is the SpanContext active when a measurement was made.
|
||||
SpanContext trace.SpanContext
|
||||
|
||||
valid bool
|
||||
}
|
||||
|
||||
// newMeasurement returns a new non-empty Measurement.
|
||||
func newMeasurement(ctx context.Context, ts time.Time, v Value, droppedAttr []attribute.KeyValue) measurement {
|
||||
return measurement{
|
||||
FilteredAttributes: droppedAttr,
|
||||
Time: ts,
|
||||
Value: v,
|
||||
SpanContext: trace.SpanContextFromContext(ctx),
|
||||
valid: true,
|
||||
}
|
||||
}
|
||||
|
||||
// Exemplar returns m as an [Exemplar].
|
||||
func (m measurement) Exemplar(dest *Exemplar) {
|
||||
dest.FilteredAttributes = m.FilteredAttributes
|
||||
dest.Time = m.Time
|
||||
dest.Value = m.Value
|
||||
|
||||
if m.SpanContext.HasTraceID() {
|
||||
traceID := m.SpanContext.TraceID()
|
||||
dest.TraceID = traceID[:]
|
||||
} else {
|
||||
dest.TraceID = dest.TraceID[:0]
|
||||
}
|
||||
|
||||
if m.SpanContext.HasSpanID() {
|
||||
spanID := m.SpanContext.SpanID()
|
||||
dest.SpanID = spanID[:]
|
||||
} else {
|
||||
dest.SpanID = dest.SpanID[:0]
|
||||
}
|
||||
}
|
||||
|
||||
func reset[T any](s []T, length, capacity int) []T {
|
||||
if cap(s) < capacity {
|
||||
return make([]T, length, capacity)
|
||||
}
|
||||
return s[:length]
|
||||
}
|
57
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/value.go
generated
vendored
Normal file
57
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/value.go
generated
vendored
Normal file
@ -0,0 +1,57 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import "math"
|
||||
|
||||
// ValueType identifies the type of value used in exemplar data.
|
||||
type ValueType uint8
|
||||
|
||||
const (
|
||||
// UnknownValueType should not be used. It represents a misconfigured
|
||||
// Value.
|
||||
UnknownValueType ValueType = 0
|
||||
// Int64ValueType represents a Value with int64 data.
|
||||
Int64ValueType ValueType = 1
|
||||
// Float64ValueType represents a Value with float64 data.
|
||||
Float64ValueType ValueType = 2
|
||||
)
|
||||
|
||||
// Value is the value of data held by an exemplar.
|
||||
type Value struct {
|
||||
t ValueType
|
||||
val uint64
|
||||
}
|
||||
|
||||
// NewValue returns a new [Value] for the provided value.
|
||||
func NewValue[N int64 | float64](value N) Value {
|
||||
switch v := any(value).(type) {
|
||||
case int64:
|
||||
return Value{t: Int64ValueType, val: uint64(v)}
|
||||
case float64:
|
||||
return Value{t: Float64ValueType, val: math.Float64bits(v)}
|
||||
}
|
||||
return Value{}
|
||||
}
|
||||
|
||||
// Type returns the [ValueType] of data held by v.
|
||||
func (v Value) Type() ValueType { return v.t }
|
||||
|
||||
// Int64 returns the value of v as an int64. If the ValueType of v is not an
|
||||
// Int64ValueType, 0 is returned.
|
||||
func (v Value) Int64() int64 {
|
||||
if v.t == Int64ValueType {
|
||||
return int64(v.val)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Float64 returns the value of v as an float64. If the ValueType of v is not
|
||||
// an Float64ValueType, 0 is returned.
|
||||
func (v Value) Float64() float64 {
|
||||
if v.t == Float64ValueType {
|
||||
return math.Float64frombits(v.val)
|
||||
}
|
||||
return 0
|
||||
}
|
13
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
13
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
@ -1,16 +1,5 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package internal // import "go.opentelemetry.io/otel/sdk/metric/internal"
|
||||
|
||||
|
112
vendor/go.opentelemetry.io/otel/sdk/metric/internal/x/README.md
generated
vendored
Normal file
112
vendor/go.opentelemetry.io/otel/sdk/metric/internal/x/README.md
generated
vendored
Normal file
@ -0,0 +1,112 @@
|
||||
# Experimental Features
|
||||
|
||||
The metric SDK contains features that have not yet stabilized in the OpenTelemetry specification.
|
||||
These features are added to the OpenTelemetry Go metric SDK prior to stabilization in the specification so that users can start experimenting with them and provide feedback.
|
||||
|
||||
These feature may change in backwards incompatible ways as feedback is applied.
|
||||
See the [Compatibility and Stability](#compatibility-and-stability) section for more information.
|
||||
|
||||
## Features
|
||||
|
||||
- [Cardinality Limit](#cardinality-limit)
|
||||
- [Exemplars](#exemplars)
|
||||
|
||||
### Cardinality Limit
|
||||
|
||||
The cardinality limit is the hard limit on the number of metric streams that can be collected for a single instrument.
|
||||
|
||||
This experimental feature can be enabled by setting the `OTEL_GO_X_CARDINALITY_LIMIT` environment value.
|
||||
The value must be an integer value.
|
||||
All other values are ignored.
|
||||
|
||||
If the value set is less than or equal to `0`, no limit will be applied.
|
||||
|
||||
#### Examples
|
||||
|
||||
Set the cardinality limit to 2000.
|
||||
|
||||
```console
|
||||
export OTEL_GO_X_CARDINALITY_LIMIT=2000
|
||||
```
|
||||
|
||||
Set an infinite cardinality limit (functionally equivalent to disabling the feature).
|
||||
|
||||
```console
|
||||
export OTEL_GO_X_CARDINALITY_LIMIT=-1
|
||||
```
|
||||
|
||||
Disable the cardinality limit.
|
||||
|
||||
```console
|
||||
unset OTEL_GO_X_CARDINALITY_LIMIT
|
||||
```
|
||||
|
||||
### Exemplars
|
||||
|
||||
A sample of measurements made may be exported directly as a set of exemplars.
|
||||
|
||||
This experimental feature can be enabled by setting the `OTEL_GO_X_EXEMPLAR` environment variable.
|
||||
The value of must be the case-insensitive string of `"true"` to enable the feature.
|
||||
All other values are ignored.
|
||||
|
||||
Exemplar filters are a supported.
|
||||
The exemplar filter applies to all measurements made.
|
||||
They filter these measurements, only allowing certain measurements to be passed to the underlying exemplar reservoir.
|
||||
|
||||
To change the exemplar filter from the default `"trace_based"` filter set the `OTEL_METRICS_EXEMPLAR_FILTER` environment variable.
|
||||
The value must be the case-sensitive string defined by the [OpenTelemetry specification].
|
||||
|
||||
- `"always_on"`: allows all measurements
|
||||
- `"always_off"`: denies all measurements
|
||||
- `"trace_based"`: allows only sampled measurements
|
||||
|
||||
All values other than these will result in the default, `"trace_based"`, exemplar filter being used.
|
||||
|
||||
[OpenTelemetry specification]: https://github.com/open-telemetry/opentelemetry-specification/blob/a6ca2fd484c9e76fe1d8e1c79c99f08f4745b5ee/specification/configuration/sdk-environment-variables.md#exemplar
|
||||
|
||||
#### Examples
|
||||
|
||||
Enable exemplars to be exported.
|
||||
|
||||
```console
|
||||
export OTEL_GO_X_EXEMPLAR=true
|
||||
```
|
||||
|
||||
Disable exemplars from being exported.
|
||||
|
||||
```console
|
||||
unset OTEL_GO_X_EXEMPLAR
|
||||
```
|
||||
|
||||
Set the exemplar filter to allow all measurements.
|
||||
|
||||
```console
|
||||
export OTEL_METRICS_EXEMPLAR_FILTER=always_on
|
||||
```
|
||||
|
||||
Set the exemplar filter to deny all measurements.
|
||||
|
||||
```console
|
||||
export OTEL_METRICS_EXEMPLAR_FILTER=always_off
|
||||
```
|
||||
|
||||
Set the exemplar filter to only allow sampled measurements.
|
||||
|
||||
```console
|
||||
export OTEL_METRICS_EXEMPLAR_FILTER=trace_based
|
||||
```
|
||||
|
||||
Revert to the default exemplar filter (`"trace_based"`)
|
||||
|
||||
```console
|
||||
unset OTEL_METRICS_EXEMPLAR_FILTER
|
||||
```
|
||||
|
||||
## Compatibility and Stability
|
||||
|
||||
Experimental features do not fall within the scope of the OpenTelemetry Go versioning and stability [policy](../../../../VERSIONING.md).
|
||||
These features may be removed or modified in successive version releases, including patch versions.
|
||||
|
||||
When an experimental feature is promoted to a stable feature, a migration path will be included in the changelog entry of the release.
|
||||
There is no guarantee that any environment variable feature flags that enabled the experimental feature will be supported by the stable version.
|
||||
If they are supported, they may be accompanied with a deprecation notice stating a timeline for the removal of that support.
|
85
vendor/go.opentelemetry.io/otel/sdk/metric/internal/x/x.go
generated
vendored
Normal file
85
vendor/go.opentelemetry.io/otel/sdk/metric/internal/x/x.go
generated
vendored
Normal file
@ -0,0 +1,85 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// Package x contains support for OTel metric SDK experimental features.
|
||||
//
|
||||
// This package should only be used for features defined in the specification.
|
||||
// It should not be used for experiments or new project ideas.
|
||||
package x // import "go.opentelemetry.io/otel/sdk/metric/internal/x"
|
||||
|
||||
import (
|
||||
"os"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
var (
|
||||
// Exemplars is an experimental feature flag that defines if exemplars
|
||||
// should be recorded for metric data-points.
|
||||
//
|
||||
// To enable this feature set the OTEL_GO_X_EXEMPLAR environment variable
|
||||
// to the case-insensitive string value of "true" (i.e. "True" and "TRUE"
|
||||
// will also enable this).
|
||||
Exemplars = newFeature("EXEMPLAR", func(v string) (string, bool) {
|
||||
if strings.ToLower(v) == "true" {
|
||||
return v, true
|
||||
}
|
||||
return "", false
|
||||
})
|
||||
|
||||
// CardinalityLimit is an experimental feature flag that defines if
|
||||
// cardinality limits should be applied to the recorded metric data-points.
|
||||
//
|
||||
// To enable this feature set the OTEL_GO_X_CARDINALITY_LIMIT environment
|
||||
// variable to the integer limit value you want to use.
|
||||
//
|
||||
// Setting OTEL_GO_X_CARDINALITY_LIMIT to a value less than or equal to 0
|
||||
// will disable the cardinality limits.
|
||||
CardinalityLimit = newFeature("CARDINALITY_LIMIT", func(v string) (int, bool) {
|
||||
n, err := strconv.Atoi(v)
|
||||
if err != nil {
|
||||
return 0, false
|
||||
}
|
||||
return n, true
|
||||
})
|
||||
)
|
||||
|
||||
// Feature is an experimental feature control flag. It provides a uniform way
|
||||
// to interact with these feature flags and parse their values.
|
||||
type Feature[T any] struct {
|
||||
key string
|
||||
parse func(v string) (T, bool)
|
||||
}
|
||||
|
||||
func newFeature[T any](suffix string, parse func(string) (T, bool)) Feature[T] {
|
||||
const envKeyRoot = "OTEL_GO_X_"
|
||||
return Feature[T]{
|
||||
key: envKeyRoot + suffix,
|
||||
parse: parse,
|
||||
}
|
||||
}
|
||||
|
||||
// Key returns the environment variable key that needs to be set to enable the
|
||||
// feature.
|
||||
func (f Feature[T]) Key() string { return f.key }
|
||||
|
||||
// Lookup returns the user configured value for the feature and true if the
|
||||
// user has enabled the feature. Otherwise, if the feature is not enabled, a
|
||||
// zero-value and false are returned.
|
||||
func (f Feature[T]) Lookup() (v T, ok bool) {
|
||||
// https://github.com/open-telemetry/opentelemetry-specification/blob/62effed618589a0bec416a87e559c0a9d96289bb/specification/configuration/sdk-environment-variables.md#parsing-empty-value
|
||||
//
|
||||
// > The SDK MUST interpret an empty value of an environment variable the
|
||||
// > same way as when the variable is unset.
|
||||
vRaw := os.Getenv(f.key)
|
||||
if vRaw == "" {
|
||||
return v, ok
|
||||
}
|
||||
return f.parse(vRaw)
|
||||
}
|
||||
|
||||
// Enabled returns if the feature is enabled.
|
||||
func (f Feature[T]) Enabled() bool {
|
||||
_, ok := f.Lookup()
|
||||
return ok
|
||||
}
|
Reference in New Issue
Block a user