mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-19 01:38:03 +08:00
vendor: update buildkit to v0.18.0-rc1
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/doc.go
generated
vendored
Normal file
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/doc.go
generated
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// Package exemplar provides an implementation of the OpenTelemetry exemplar
|
||||
// reservoir to be used in metric collection pipelines.
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
23
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/drop.go
generated
vendored
Normal file
23
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/drop.go
generated
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Drop returns a [FilteredReservoir] that drops all measurements it is offered.
|
||||
func Drop[N int64 | float64]() FilteredReservoir[N] { return &dropRes[N]{} }
|
||||
|
||||
type dropRes[N int64 | float64] struct{}
|
||||
|
||||
// Offer does nothing, all measurements offered will be dropped.
|
||||
func (r *dropRes[N]) Offer(context.Context, N, []attribute.KeyValue) {}
|
||||
|
||||
// Collect resets dest. No exemplars will ever be returned.
|
||||
func (r *dropRes[N]) Collect(dest *[]Exemplar) {
|
||||
*dest = (*dest)[:0]
|
||||
}
|
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/exemplar.go
generated
vendored
Normal file
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/exemplar.go
generated
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Exemplar is a measurement sampled from a timeseries providing a typical
|
||||
// example.
|
||||
type Exemplar struct {
|
||||
// FilteredAttributes are the attributes recorded with the measurement but
|
||||
// filtered out of the timeseries' aggregated data.
|
||||
FilteredAttributes []attribute.KeyValue
|
||||
// Time is the time when the measurement was recorded.
|
||||
Time time.Time
|
||||
// Value is the measured value.
|
||||
Value Value
|
||||
// SpanID is the ID of the span that was active during the measurement. If
|
||||
// no span was active or the span was not sampled this will be empty.
|
||||
SpanID []byte `json:",omitempty"`
|
||||
// TraceID is the ID of the trace the active span belonged to during the
|
||||
// measurement. If no span was active or the span was not sampled this will
|
||||
// be empty.
|
||||
TraceID []byte `json:",omitempty"`
|
||||
}
|
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filter.go
generated
vendored
Normal file
29
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filter.go
generated
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"go.opentelemetry.io/otel/trace"
|
||||
)
|
||||
|
||||
// Filter determines if a measurement should be offered.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
type Filter func(context.Context) bool
|
||||
|
||||
// SampledFilter is a [Filter] that will only offer measurements
|
||||
// if the passed context associated with the measurement contains a sampled
|
||||
// [go.opentelemetry.io/otel/trace.SpanContext].
|
||||
func SampledFilter(ctx context.Context) bool {
|
||||
return trace.SpanContextFromContext(ctx).IsSampled()
|
||||
}
|
||||
|
||||
// AlwaysOnFilter is a [Filter] that always offers measurements.
|
||||
func AlwaysOnFilter(ctx context.Context) bool {
|
||||
return true
|
||||
}
|
49
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filtered_reservoir.go
generated
vendored
Normal file
49
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/filtered_reservoir.go
generated
vendored
Normal file
@@ -0,0 +1,49 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// FilteredReservoir wraps a [Reservoir] with a filter.
|
||||
type FilteredReservoir[N int64 | float64] interface {
|
||||
// Offer accepts the parameters associated with a measurement. The
|
||||
// parameters will be stored as an exemplar if the filter decides to
|
||||
// sample the measurement.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
Offer(ctx context.Context, val N, attr []attribute.KeyValue)
|
||||
// Collect returns all the held exemplars in the reservoir.
|
||||
Collect(dest *[]Exemplar)
|
||||
}
|
||||
|
||||
// filteredReservoir handles the pre-sampled exemplar of measurements made.
|
||||
type filteredReservoir[N int64 | float64] struct {
|
||||
filter Filter
|
||||
reservoir Reservoir
|
||||
}
|
||||
|
||||
// NewFilteredReservoir creates a [FilteredReservoir] which only offers values
|
||||
// that are allowed by the filter.
|
||||
func NewFilteredReservoir[N int64 | float64](f Filter, r Reservoir) FilteredReservoir[N] {
|
||||
return &filteredReservoir[N]{
|
||||
filter: f,
|
||||
reservoir: r,
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredReservoir[N]) Offer(ctx context.Context, val N, attr []attribute.KeyValue) {
|
||||
if f.filter(ctx) {
|
||||
// only record the current time if we are sampling this measurment.
|
||||
f.reservoir.Offer(ctx, time.Now(), NewValue(val), attr)
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredReservoir[N]) Collect(dest *[]Exemplar) { f.reservoir.Collect(dest) }
|
46
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/hist.go
generated
vendored
Normal file
46
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/hist.go
generated
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"slices"
|
||||
"sort"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Histogram returns a [Reservoir] that samples the last measurement that falls
|
||||
// within a histogram bucket. The histogram bucket upper-boundaries are define
|
||||
// by bounds.
|
||||
//
|
||||
// The passed bounds will be sorted by this function.
|
||||
func Histogram(bounds []float64) Reservoir {
|
||||
slices.Sort(bounds)
|
||||
return &histRes{
|
||||
bounds: bounds,
|
||||
storage: newStorage(len(bounds) + 1),
|
||||
}
|
||||
}
|
||||
|
||||
type histRes struct {
|
||||
*storage
|
||||
|
||||
// bounds are bucket bounds in ascending order.
|
||||
bounds []float64
|
||||
}
|
||||
|
||||
func (r *histRes) Offer(ctx context.Context, t time.Time, v Value, a []attribute.KeyValue) {
|
||||
var x float64
|
||||
switch v.Type() {
|
||||
case Int64ValueType:
|
||||
x = float64(v.Int64())
|
||||
case Float64ValueType:
|
||||
x = v.Float64()
|
||||
default:
|
||||
panic("unknown value type")
|
||||
}
|
||||
r.store[sort.SearchFloat64s(r.bounds, x)] = newMeasurement(ctx, t, v, a)
|
||||
}
|
191
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/rand.go
generated
vendored
Normal file
191
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/rand.go
generated
vendored
Normal file
@@ -0,0 +1,191 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"math/rand"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
var (
|
||||
// rng is used to make sampling decisions.
|
||||
//
|
||||
// Do not use crypto/rand. There is no reason for the decrease in performance
|
||||
// given this is not a security sensitive decision.
|
||||
rng = rand.New(rand.NewSource(time.Now().UnixNano()))
|
||||
// Ensure concurrent safe accecess to rng and its underlying source.
|
||||
rngMu sync.Mutex
|
||||
)
|
||||
|
||||
// random returns, as a float64, a uniform pseudo-random number in the open
|
||||
// interval (0.0,1.0).
|
||||
func random() float64 {
|
||||
// TODO: This does not return a uniform number. rng.Float64 returns a
|
||||
// uniformly random int in [0,2^53) that is divided by 2^53. Meaning it
|
||||
// returns multiples of 2^-53, and not all floating point numbers between 0
|
||||
// and 1 (i.e. for values less than 2^-4 the 4 last bits of the significand
|
||||
// are always going to be 0).
|
||||
//
|
||||
// An alternative algorithm should be considered that will actually return
|
||||
// a uniform number in the interval (0,1). For example, since the default
|
||||
// rand source provides a uniform distribution for Int63, this can be
|
||||
// converted following the prototypical code of Mersenne Twister 64 (Takuji
|
||||
// Nishimura and Makoto Matsumoto:
|
||||
// http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/C-LANG/mt19937-64.c)
|
||||
//
|
||||
// (float64(rng.Int63()>>11) + 0.5) * (1.0 / 4503599627370496.0)
|
||||
//
|
||||
// There are likely many other methods to explore here as well.
|
||||
|
||||
rngMu.Lock()
|
||||
defer rngMu.Unlock()
|
||||
|
||||
f := rng.Float64()
|
||||
for f == 0 {
|
||||
f = rng.Float64()
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
// FixedSize returns a [Reservoir] that samples at most k exemplars. If there
|
||||
// are k or less measurements made, the Reservoir will sample each one. If
|
||||
// there are more than k, the Reservoir will then randomly sample all
|
||||
// additional measurement with a decreasing probability.
|
||||
func FixedSize(k int) Reservoir {
|
||||
r := &randRes{storage: newStorage(k)}
|
||||
r.reset()
|
||||
return r
|
||||
}
|
||||
|
||||
type randRes struct {
|
||||
*storage
|
||||
|
||||
// count is the number of measurement seen.
|
||||
count int64
|
||||
// next is the next count that will store a measurement at a random index
|
||||
// once the reservoir has been filled.
|
||||
next int64
|
||||
// w is the largest random number in a distribution that is used to compute
|
||||
// the next next.
|
||||
w float64
|
||||
}
|
||||
|
||||
func (r *randRes) Offer(ctx context.Context, t time.Time, n Value, a []attribute.KeyValue) {
|
||||
// The following algorithm is "Algorithm L" from Li, Kim-Hung (4 December
|
||||
// 1994). "Reservoir-Sampling Algorithms of Time Complexity
|
||||
// O(n(1+log(N/n)))". ACM Transactions on Mathematical Software. 20 (4):
|
||||
// 481–493 (https://dl.acm.org/doi/10.1145/198429.198435).
|
||||
//
|
||||
// A high-level overview of "Algorithm L":
|
||||
// 0) Pre-calculate the random count greater than the storage size when
|
||||
// an exemplar will be replaced.
|
||||
// 1) Accept all measurements offered until the configured storage size is
|
||||
// reached.
|
||||
// 2) Loop:
|
||||
// a) When the pre-calculate count is reached, replace a random
|
||||
// existing exemplar with the offered measurement.
|
||||
// b) Calculate the next random count greater than the existing one
|
||||
// which will replace another exemplars
|
||||
//
|
||||
// The way a "replacement" count is computed is by looking at `n` number of
|
||||
// independent random numbers each corresponding to an offered measurement.
|
||||
// Of these numbers the smallest `k` (the same size as the storage
|
||||
// capacity) of them are kept as a subset. The maximum value in this
|
||||
// subset, called `w` is used to weight another random number generation
|
||||
// for the next count that will be considered.
|
||||
//
|
||||
// By weighting the next count computation like described, it is able to
|
||||
// perform a uniformly-weighted sampling algorithm based on the number of
|
||||
// samples the reservoir has seen so far. The sampling will "slow down" as
|
||||
// more and more samples are offered so as to reduce a bias towards those
|
||||
// offered just prior to the end of the collection.
|
||||
//
|
||||
// This algorithm is preferred because of its balance of simplicity and
|
||||
// performance. It will compute three random numbers (the bulk of
|
||||
// computation time) for each item that becomes part of the reservoir, but
|
||||
// it does not spend any time on items that do not. In particular it has an
|
||||
// asymptotic runtime of O(k(1 + log(n/k)) where n is the number of
|
||||
// measurements offered and k is the reservoir size.
|
||||
//
|
||||
// See https://en.wikipedia.org/wiki/Reservoir_sampling for an overview of
|
||||
// this and other reservoir sampling algorithms. See
|
||||
// https://github.com/MrAlias/reservoir-sampling for a performance
|
||||
// comparison of reservoir sampling algorithms.
|
||||
|
||||
if int(r.count) < cap(r.store) {
|
||||
r.store[r.count] = newMeasurement(ctx, t, n, a)
|
||||
} else {
|
||||
if r.count == r.next {
|
||||
// Overwrite a random existing measurement with the one offered.
|
||||
idx := int(rng.Int63n(int64(cap(r.store))))
|
||||
r.store[idx] = newMeasurement(ctx, t, n, a)
|
||||
r.advance()
|
||||
}
|
||||
}
|
||||
r.count++
|
||||
}
|
||||
|
||||
// reset resets r to the initial state.
|
||||
func (r *randRes) reset() {
|
||||
// This resets the number of exemplars known.
|
||||
r.count = 0
|
||||
// Random index inserts should only happen after the storage is full.
|
||||
r.next = int64(cap(r.store))
|
||||
|
||||
// Initial random number in the series used to generate r.next.
|
||||
//
|
||||
// This is set before r.advance to reset or initialize the random number
|
||||
// series. Without doing so it would always be 0 or never restart a new
|
||||
// random number series.
|
||||
//
|
||||
// This maps the uniform random number in (0,1) to a geometric distribution
|
||||
// over the same interval. The mean of the distribution is inversely
|
||||
// proportional to the storage capacity.
|
||||
r.w = math.Exp(math.Log(random()) / float64(cap(r.store)))
|
||||
|
||||
r.advance()
|
||||
}
|
||||
|
||||
// advance updates the count at which the offered measurement will overwrite an
|
||||
// existing exemplar.
|
||||
func (r *randRes) advance() {
|
||||
// Calculate the next value in the random number series.
|
||||
//
|
||||
// The current value of r.w is based on the max of a distribution of random
|
||||
// numbers (i.e. `w = max(u_1,u_2,...,u_k)` for `k` equal to the capacity
|
||||
// of the storage and each `u` in the interval (0,w)). To calculate the
|
||||
// next r.w we use the fact that when the next exemplar is selected to be
|
||||
// included in the storage an existing one will be dropped, and the
|
||||
// corresponding random number in the set used to calculate r.w will also
|
||||
// be replaced. The replacement random number will also be within (0,w),
|
||||
// therefore the next r.w will be based on the same distribution (i.e.
|
||||
// `max(u_1,u_2,...,u_k)`). Therefore, we can sample the next r.w by
|
||||
// computing the next random number `u` and take r.w as `w * u^(1/k)`.
|
||||
r.w *= math.Exp(math.Log(random()) / float64(cap(r.store)))
|
||||
// Use the new random number in the series to calculate the count of the
|
||||
// next measurement that will be stored.
|
||||
//
|
||||
// Given 0 < r.w < 1, each iteration will result in subsequent r.w being
|
||||
// smaller. This translates here into the next next being selected against
|
||||
// a distribution with a higher mean (i.e. the expected value will increase
|
||||
// and replacements become less likely)
|
||||
//
|
||||
// Important to note, the new r.next will always be at least 1 more than
|
||||
// the last r.next.
|
||||
r.next += int64(math.Log(random())/math.Log(1-r.w)) + 1
|
||||
}
|
||||
|
||||
func (r *randRes) Collect(dest *[]Exemplar) {
|
||||
r.storage.Collect(dest)
|
||||
// Call reset here even though it will reset r.count and restart the random
|
||||
// number series. This will persist any old exemplars as long as no new
|
||||
// measurements are offered, but it will also prioritize those new
|
||||
// measurements that are made over the older collection cycle ones.
|
||||
r.reset()
|
||||
}
|
32
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/reservoir.go
generated
vendored
Normal file
32
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/reservoir.go
generated
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
)
|
||||
|
||||
// Reservoir holds the sampled exemplar of measurements made.
|
||||
type Reservoir interface {
|
||||
// Offer accepts the parameters associated with a measurement. The
|
||||
// parameters will be stored as an exemplar if the Reservoir decides to
|
||||
// sample the measurement.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
//
|
||||
// The time t is the time when the measurement was made. The val and attr
|
||||
// parameters are the value and dropped (filtered) attributes of the
|
||||
// measurement respectively.
|
||||
Offer(ctx context.Context, t time.Time, val Value, attr []attribute.KeyValue)
|
||||
|
||||
// Collect returns all the held exemplars.
|
||||
//
|
||||
// The Reservoir state is preserved after this call.
|
||||
Collect(dest *[]Exemplar)
|
||||
}
|
95
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/storage.go
generated
vendored
Normal file
95
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/storage.go
generated
vendored
Normal file
@@ -0,0 +1,95 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/trace"
|
||||
)
|
||||
|
||||
// storage is an exemplar storage for [Reservoir] implementations.
|
||||
type storage struct {
|
||||
// store are the measurements sampled.
|
||||
//
|
||||
// This does not use []metricdata.Exemplar because it potentially would
|
||||
// require an allocation for trace and span IDs in the hot path of Offer.
|
||||
store []measurement
|
||||
}
|
||||
|
||||
func newStorage(n int) *storage {
|
||||
return &storage{store: make([]measurement, n)}
|
||||
}
|
||||
|
||||
// Collect returns all the held exemplars.
|
||||
//
|
||||
// The Reservoir state is preserved after this call.
|
||||
func (r *storage) Collect(dest *[]Exemplar) {
|
||||
*dest = reset(*dest, len(r.store), len(r.store))
|
||||
var n int
|
||||
for _, m := range r.store {
|
||||
if !m.valid {
|
||||
continue
|
||||
}
|
||||
|
||||
m.Exemplar(&(*dest)[n])
|
||||
n++
|
||||
}
|
||||
*dest = (*dest)[:n]
|
||||
}
|
||||
|
||||
// measurement is a measurement made by a telemetry system.
|
||||
type measurement struct {
|
||||
// FilteredAttributes are the attributes dropped during the measurement.
|
||||
FilteredAttributes []attribute.KeyValue
|
||||
// Time is the time when the measurement was made.
|
||||
Time time.Time
|
||||
// Value is the value of the measurement.
|
||||
Value Value
|
||||
// SpanContext is the SpanContext active when a measurement was made.
|
||||
SpanContext trace.SpanContext
|
||||
|
||||
valid bool
|
||||
}
|
||||
|
||||
// newMeasurement returns a new non-empty Measurement.
|
||||
func newMeasurement(ctx context.Context, ts time.Time, v Value, droppedAttr []attribute.KeyValue) measurement {
|
||||
return measurement{
|
||||
FilteredAttributes: droppedAttr,
|
||||
Time: ts,
|
||||
Value: v,
|
||||
SpanContext: trace.SpanContextFromContext(ctx),
|
||||
valid: true,
|
||||
}
|
||||
}
|
||||
|
||||
// Exemplar returns m as an [Exemplar].
|
||||
func (m measurement) Exemplar(dest *Exemplar) {
|
||||
dest.FilteredAttributes = m.FilteredAttributes
|
||||
dest.Time = m.Time
|
||||
dest.Value = m.Value
|
||||
|
||||
if m.SpanContext.HasTraceID() {
|
||||
traceID := m.SpanContext.TraceID()
|
||||
dest.TraceID = traceID[:]
|
||||
} else {
|
||||
dest.TraceID = dest.TraceID[:0]
|
||||
}
|
||||
|
||||
if m.SpanContext.HasSpanID() {
|
||||
spanID := m.SpanContext.SpanID()
|
||||
dest.SpanID = spanID[:]
|
||||
} else {
|
||||
dest.SpanID = dest.SpanID[:0]
|
||||
}
|
||||
}
|
||||
|
||||
func reset[T any](s []T, length, capacity int) []T {
|
||||
if cap(s) < capacity {
|
||||
return make([]T, length, capacity)
|
||||
}
|
||||
return s[:length]
|
||||
}
|
57
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/value.go
generated
vendored
Normal file
57
vendor/go.opentelemetry.io/otel/sdk/metric/internal/exemplar/value.go
generated
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package exemplar // import "go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
|
||||
import "math"
|
||||
|
||||
// ValueType identifies the type of value used in exemplar data.
|
||||
type ValueType uint8
|
||||
|
||||
const (
|
||||
// UnknownValueType should not be used. It represents a misconfigured
|
||||
// Value.
|
||||
UnknownValueType ValueType = 0
|
||||
// Int64ValueType represents a Value with int64 data.
|
||||
Int64ValueType ValueType = 1
|
||||
// Float64ValueType represents a Value with float64 data.
|
||||
Float64ValueType ValueType = 2
|
||||
)
|
||||
|
||||
// Value is the value of data held by an exemplar.
|
||||
type Value struct {
|
||||
t ValueType
|
||||
val uint64
|
||||
}
|
||||
|
||||
// NewValue returns a new [Value] for the provided value.
|
||||
func NewValue[N int64 | float64](value N) Value {
|
||||
switch v := any(value).(type) {
|
||||
case int64:
|
||||
return Value{t: Int64ValueType, val: uint64(v)}
|
||||
case float64:
|
||||
return Value{t: Float64ValueType, val: math.Float64bits(v)}
|
||||
}
|
||||
return Value{}
|
||||
}
|
||||
|
||||
// Type returns the [ValueType] of data held by v.
|
||||
func (v Value) Type() ValueType { return v.t }
|
||||
|
||||
// Int64 returns the value of v as an int64. If the ValueType of v is not an
|
||||
// Int64ValueType, 0 is returned.
|
||||
func (v Value) Int64() int64 {
|
||||
if v.t == Int64ValueType {
|
||||
return int64(v.val)
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Float64 returns the value of v as an float64. If the ValueType of v is not
|
||||
// an Float64ValueType, 0 is returned.
|
||||
func (v Value) Float64() float64 {
|
||||
if v.t == Float64ValueType {
|
||||
return math.Float64frombits(v.val)
|
||||
}
|
||||
return 0
|
||||
}
|
Reference in New Issue
Block a user