mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-21 18:58:03 +08:00
vendor: update buildkit with typed errors support
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
117
vendor/github.com/prometheus/client_golang/prometheus/histogram.go
generated
vendored
117
vendor/github.com/prometheus/client_golang/prometheus/histogram.go
generated
vendored
@@ -20,7 +20,9 @@ import (
|
||||
"sort"
|
||||
"sync"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
|
||||
//lint:ignore SA1019 Need to keep deprecated package for compatibility.
|
||||
"github.com/golang/protobuf/proto"
|
||||
|
||||
dto "github.com/prometheus/client_model/go"
|
||||
@@ -138,7 +140,7 @@ type HistogramOpts struct {
|
||||
// better covered by target labels set by the scraping Prometheus
|
||||
// server, or by one specific metric (e.g. a build_info or a
|
||||
// machine_role metric). See also
|
||||
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels
|
||||
// https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels-not-static-scraped-labels
|
||||
ConstLabels Labels
|
||||
|
||||
// Buckets defines the buckets into which observations are counted. Each
|
||||
@@ -151,6 +153,10 @@ type HistogramOpts struct {
|
||||
|
||||
// NewHistogram creates a new Histogram based on the provided HistogramOpts. It
|
||||
// panics if the buckets in HistogramOpts are not in strictly increasing order.
|
||||
//
|
||||
// The returned implementation also implements ExemplarObserver. It is safe to
|
||||
// perform the corresponding type assertion. Exemplars are tracked separately
|
||||
// for each bucket.
|
||||
func NewHistogram(opts HistogramOpts) Histogram {
|
||||
return newHistogram(
|
||||
NewDesc(
|
||||
@@ -187,7 +193,8 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
|
||||
desc: desc,
|
||||
upperBounds: opts.Buckets,
|
||||
labelPairs: makeLabelPairs(desc, labelValues),
|
||||
counts: [2]*histogramCounts{&histogramCounts{}, &histogramCounts{}},
|
||||
counts: [2]*histogramCounts{{}, {}},
|
||||
now: time.Now,
|
||||
}
|
||||
for i, upperBound := range h.upperBounds {
|
||||
if i < len(h.upperBounds)-1 {
|
||||
@@ -205,9 +212,10 @@ func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogr
|
||||
}
|
||||
}
|
||||
// Finally we know the final length of h.upperBounds and can make buckets
|
||||
// for both counts:
|
||||
// for both counts as well as exemplars:
|
||||
h.counts[0].buckets = make([]uint64, len(h.upperBounds))
|
||||
h.counts[1].buckets = make([]uint64, len(h.upperBounds))
|
||||
h.exemplars = make([]atomic.Value, len(h.upperBounds)+1)
|
||||
|
||||
h.init(h) // Init self-collection.
|
||||
return h
|
||||
@@ -254,6 +262,9 @@ type histogram struct {
|
||||
|
||||
upperBounds []float64
|
||||
labelPairs []*dto.LabelPair
|
||||
exemplars []atomic.Value // One more than buckets (to include +Inf), each a *dto.Exemplar.
|
||||
|
||||
now func() time.Time // To mock out time.Now() for testing.
|
||||
}
|
||||
|
||||
func (h *histogram) Desc() *Desc {
|
||||
@@ -261,36 +272,13 @@ func (h *histogram) Desc() *Desc {
|
||||
}
|
||||
|
||||
func (h *histogram) Observe(v float64) {
|
||||
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
|
||||
// slightly faster than the binary search. If we really care, we could
|
||||
// switch from one search strategy to the other depending on the number
|
||||
// of buckets.
|
||||
//
|
||||
// Microbenchmarks (BenchmarkHistogramNoLabels):
|
||||
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
|
||||
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
|
||||
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
|
||||
i := sort.SearchFloat64s(h.upperBounds, v)
|
||||
h.observe(v, h.findBucket(v))
|
||||
}
|
||||
|
||||
// We increment h.countAndHotIdx so that the counter in the lower
|
||||
// 63 bits gets incremented. At the same time, we get the new value
|
||||
// back, which we can use to find the currently-hot counts.
|
||||
n := atomic.AddUint64(&h.countAndHotIdx, 1)
|
||||
hotCounts := h.counts[n>>63]
|
||||
|
||||
if i < len(h.upperBounds) {
|
||||
atomic.AddUint64(&hotCounts.buckets[i], 1)
|
||||
}
|
||||
for {
|
||||
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
|
||||
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
|
||||
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
|
||||
break
|
||||
}
|
||||
}
|
||||
// Increment count last as we take it as a signal that the observation
|
||||
// is complete.
|
||||
atomic.AddUint64(&hotCounts.count, 1)
|
||||
func (h *histogram) ObserveWithExemplar(v float64, e Labels) {
|
||||
i := h.findBucket(v)
|
||||
h.observe(v, i)
|
||||
h.updateExemplar(v, i, e)
|
||||
}
|
||||
|
||||
func (h *histogram) Write(out *dto.Metric) error {
|
||||
@@ -329,6 +317,18 @@ func (h *histogram) Write(out *dto.Metric) error {
|
||||
CumulativeCount: proto.Uint64(cumCount),
|
||||
UpperBound: proto.Float64(upperBound),
|
||||
}
|
||||
if e := h.exemplars[i].Load(); e != nil {
|
||||
his.Bucket[i].Exemplar = e.(*dto.Exemplar)
|
||||
}
|
||||
}
|
||||
// If there is an exemplar for the +Inf bucket, we have to add that bucket explicitly.
|
||||
if e := h.exemplars[len(h.upperBounds)].Load(); e != nil {
|
||||
b := &dto.Bucket{
|
||||
CumulativeCount: proto.Uint64(count),
|
||||
UpperBound: proto.Float64(math.Inf(1)),
|
||||
Exemplar: e.(*dto.Exemplar),
|
||||
}
|
||||
his.Bucket = append(his.Bucket, b)
|
||||
}
|
||||
|
||||
out.Histogram = his
|
||||
@@ -352,6 +352,57 @@ func (h *histogram) Write(out *dto.Metric) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
// findBucket returns the index of the bucket for the provided value, or
|
||||
// len(h.upperBounds) for the +Inf bucket.
|
||||
func (h *histogram) findBucket(v float64) int {
|
||||
// TODO(beorn7): For small numbers of buckets (<30), a linear search is
|
||||
// slightly faster than the binary search. If we really care, we could
|
||||
// switch from one search strategy to the other depending on the number
|
||||
// of buckets.
|
||||
//
|
||||
// Microbenchmarks (BenchmarkHistogramNoLabels):
|
||||
// 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op
|
||||
// 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op
|
||||
// 300 buckets: 154 ns/op linear - binary 61.6 ns/op
|
||||
return sort.SearchFloat64s(h.upperBounds, v)
|
||||
}
|
||||
|
||||
// observe is the implementation for Observe without the findBucket part.
|
||||
func (h *histogram) observe(v float64, bucket int) {
|
||||
// We increment h.countAndHotIdx so that the counter in the lower
|
||||
// 63 bits gets incremented. At the same time, we get the new value
|
||||
// back, which we can use to find the currently-hot counts.
|
||||
n := atomic.AddUint64(&h.countAndHotIdx, 1)
|
||||
hotCounts := h.counts[n>>63]
|
||||
|
||||
if bucket < len(h.upperBounds) {
|
||||
atomic.AddUint64(&hotCounts.buckets[bucket], 1)
|
||||
}
|
||||
for {
|
||||
oldBits := atomic.LoadUint64(&hotCounts.sumBits)
|
||||
newBits := math.Float64bits(math.Float64frombits(oldBits) + v)
|
||||
if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) {
|
||||
break
|
||||
}
|
||||
}
|
||||
// Increment count last as we take it as a signal that the observation
|
||||
// is complete.
|
||||
atomic.AddUint64(&hotCounts.count, 1)
|
||||
}
|
||||
|
||||
// updateExemplar replaces the exemplar for the provided bucket. With empty
|
||||
// labels, it's a no-op. It panics if any of the labels is invalid.
|
||||
func (h *histogram) updateExemplar(v float64, bucket int, l Labels) {
|
||||
if l == nil {
|
||||
return
|
||||
}
|
||||
e, err := newExemplar(v, h.now(), l)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
h.exemplars[bucket].Store(e)
|
||||
}
|
||||
|
||||
// HistogramVec is a Collector that bundles a set of Histograms that all share the
|
||||
// same Desc, but have different values for their variable labels. This is used
|
||||
// if you want to count the same thing partitioned by various dimensions
|
||||
@@ -556,7 +607,7 @@ func NewConstHistogram(
|
||||
}
|
||||
|
||||
// MustNewConstHistogram is a version of NewConstHistogram that panics where
|
||||
// NewConstMetric would have returned an error.
|
||||
// NewConstHistogram would have returned an error.
|
||||
func MustNewConstHistogram(
|
||||
desc *Desc,
|
||||
count uint64,
|
||||
|
Reference in New Issue
Block a user