vendor: update buildkit to v0.19.0-rc1

Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
Tonis Tiigi
2025-01-14 14:20:26 -08:00
parent 630066bfc5
commit 44fa243d58
1910 changed files with 95196 additions and 50438 deletions

View File

@@ -8,7 +8,6 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@@ -38,8 +37,8 @@ type Builder[N int64 | float64] struct {
// create new exemplar reservoirs for a new seen attribute set.
//
// If this is not provided a default factory function that returns an
// exemplar.Drop reservoir will be used.
ReservoirFunc func() exemplar.FilteredReservoir[N]
// DropReservoir reservoir will be used.
ReservoirFunc func() FilteredExemplarReservoir[N]
// AggregationLimit is the cardinality limit of measurement attributes. Any
// measurement for new attributes once the limit has been reached will be
// aggregated into a single aggregate for the "otel.metric.overflow"
@@ -50,12 +49,12 @@ type Builder[N int64 | float64] struct {
AggregationLimit int
}
func (b Builder[N]) resFunc() func() exemplar.FilteredReservoir[N] {
func (b Builder[N]) resFunc() func() FilteredExemplarReservoir[N] {
if b.ReservoirFunc != nil {
return b.ReservoirFunc
}
return exemplar.Drop
return DropReservoir
}
type fltrMeasure[N int64 | float64] func(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue)

View File

@@ -0,0 +1,24 @@
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
)
// DropReservoir returns a [FilteredReservoir] that drops all measurements it is offered.
func DropReservoir[N int64 | float64]() FilteredExemplarReservoir[N] { return &dropRes[N]{} }
type dropRes[N int64 | float64] struct{}
// Offer does nothing, all measurements offered will be dropped.
func (r *dropRes[N]) Offer(context.Context, N, []attribute.KeyValue) {}
// Collect resets dest. No exemplars will ever be returned.
func (r *dropRes[N]) Collect(dest *[]exemplar.Exemplar) {
*dest = (*dest)[:0]
}

View File

@@ -6,7 +6,7 @@ package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggreg
import (
"sync"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)

View File

@@ -12,7 +12,6 @@ import (
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@@ -31,7 +30,7 @@ const (
// expoHistogramDataPoint is a single data point in an exponential histogram.
type expoHistogramDataPoint[N int64 | float64] struct {
attrs attribute.Set
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
count uint64
min N
@@ -42,14 +41,14 @@ type expoHistogramDataPoint[N int64 | float64] struct {
noMinMax bool
noSum bool
scale int
scale int32
posBuckets expoBuckets
negBuckets expoBuckets
zeroCount uint64
}
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize, maxScale int, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
f := math.MaxFloat64
max := N(f) // if N is int64, max will overflow to -9223372036854775808
min := N(-f)
@@ -119,11 +118,13 @@ func (p *expoHistogramDataPoint[N]) record(v N) {
}
// getBin returns the bin v should be recorded into.
func (p *expoHistogramDataPoint[N]) getBin(v float64) int {
frac, exp := math.Frexp(v)
func (p *expoHistogramDataPoint[N]) getBin(v float64) int32 {
frac, expInt := math.Frexp(v)
// 11-bit exponential.
exp := int32(expInt) // nolint: gosec
if p.scale <= 0 {
// Because of the choice of fraction is always 1 power of two higher than we want.
correction := 1
var correction int32 = 1
if frac == .5 {
// If v is an exact power of two the frac will be .5 and the exp
// will be one higher than we want.
@@ -131,7 +132,7 @@ func (p *expoHistogramDataPoint[N]) getBin(v float64) int {
}
return (exp - correction) >> (-p.scale)
}
return exp<<p.scale + int(math.Log(frac)*scaleFactors[p.scale]) - 1
return exp<<p.scale + int32(math.Log(frac)*scaleFactors[p.scale]) - 1
}
// scaleFactors are constants used in calculating the logarithm index. They are
@@ -162,20 +163,20 @@ var scaleFactors = [21]float64{
// scaleChange returns the magnitude of the scale change needed to fit bin in
// the bucket. If no scale change is needed 0 is returned.
func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int {
func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin int32, length int) int32 {
if length == 0 {
// No need to rescale if there are no buckets.
return 0
}
low := startBin
high := bin
low := int(startBin)
high := int(bin)
if startBin >= bin {
low = bin
high = startBin + length - 1
low = int(bin)
high = int(startBin) + length - 1
}
count := 0
var count int32
for high-low >= p.maxSize {
low = low >> 1
high = high >> 1
@@ -189,39 +190,39 @@ func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin, length int) int {
// expoBuckets is a set of buckets in an exponential histogram.
type expoBuckets struct {
startBin int
startBin int32
counts []uint64
}
// record increments the count for the given bin, and expands the buckets if needed.
// Size changes must be done before calling this function.
func (b *expoBuckets) record(bin int) {
func (b *expoBuckets) record(bin int32) {
if len(b.counts) == 0 {
b.counts = []uint64{1}
b.startBin = bin
return
}
endBin := b.startBin + len(b.counts) - 1
endBin := int(b.startBin) + len(b.counts) - 1
// if the new bin is inside the current range
if bin >= b.startBin && bin <= endBin {
if bin >= b.startBin && int(bin) <= endBin {
b.counts[bin-b.startBin]++
return
}
// if the new bin is before the current start add spaces to the counts
if bin < b.startBin {
origLen := len(b.counts)
newLength := endBin - bin + 1
newLength := endBin - int(bin) + 1
shift := b.startBin - bin
if newLength > cap(b.counts) {
b.counts = append(b.counts, make([]uint64, newLength-len(b.counts))...)
}
copy(b.counts[shift:origLen+shift], b.counts[:])
copy(b.counts[shift:origLen+int(shift)], b.counts[:])
b.counts = b.counts[:newLength]
for i := 1; i < shift; i++ {
for i := 1; i < int(shift); i++ {
b.counts[i] = 0
}
b.startBin = bin
@@ -229,17 +230,17 @@ func (b *expoBuckets) record(bin int) {
return
}
// if the new is after the end add spaces to the end
if bin > endBin {
if bin-b.startBin < cap(b.counts) {
if int(bin) > endBin {
if int(bin-b.startBin) < cap(b.counts) {
b.counts = b.counts[:bin-b.startBin+1]
for i := endBin + 1 - b.startBin; i < len(b.counts); i++ {
for i := endBin + 1 - int(b.startBin); i < len(b.counts); i++ {
b.counts[i] = 0
}
b.counts[bin-b.startBin] = 1
return
}
end := make([]uint64, bin-b.startBin-len(b.counts)+1)
end := make([]uint64, int(bin-b.startBin)-len(b.counts)+1)
b.counts = append(b.counts, end...)
b.counts[bin-b.startBin] = 1
}
@@ -247,7 +248,7 @@ func (b *expoBuckets) record(bin int) {
// downscale shrinks a bucket by a factor of 2*s. It will sum counts into the
// correct lower resolution bucket.
func (b *expoBuckets) downscale(delta int) {
func (b *expoBuckets) downscale(delta int32) {
// Example
// delta = 2
// Original offset: -6
@@ -262,19 +263,19 @@ func (b *expoBuckets) downscale(delta int) {
return
}
steps := 1 << delta
steps := int32(1) << delta
offset := b.startBin % steps
offset = (offset + steps) % steps // to make offset positive
for i := 1; i < len(b.counts); i++ {
idx := i + offset
if idx%steps == 0 {
b.counts[idx/steps] = b.counts[i]
idx := i + int(offset)
if idx%int(steps) == 0 {
b.counts[idx/int(steps)] = b.counts[i]
continue
}
b.counts[idx/steps] += b.counts[i]
b.counts[idx/int(steps)] += b.counts[i]
}
lastIdx := (len(b.counts) - 1 + offset) / steps
lastIdx := (len(b.counts) - 1 + int(offset)) / int(steps)
b.counts = b.counts[:lastIdx+1]
b.startBin = b.startBin >> delta
}
@@ -282,12 +283,12 @@ func (b *expoBuckets) downscale(delta int) {
// newExponentialHistogram returns an Aggregator that summarizes a set of
// measurements as an exponential histogram. Each histogram is scoped by attributes
// and the aggregation cycle the measurements were made in.
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *expoHistogram[N] {
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() FilteredExemplarReservoir[N]) *expoHistogram[N] {
return &expoHistogram[N]{
noSum: noSum,
noMinMax: noMinMax,
maxSize: int(maxSize),
maxScale: int(maxScale),
maxScale: maxScale,
newRes: r,
limit: newLimiter[*expoHistogramDataPoint[N]](limit),
@@ -303,9 +304,9 @@ type expoHistogram[N int64 | float64] struct {
noSum bool
noMinMax bool
maxSize int
maxScale int
maxScale int32
newRes func() exemplar.FilteredReservoir[N]
newRes func() FilteredExemplarReservoir[N]
limit limiter[*expoHistogramDataPoint[N]]
values map[attribute.Distinct]*expoHistogramDataPoint[N]
valuesMu sync.Mutex
@@ -354,15 +355,15 @@ func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
hDPts[i].StartTime = e.start
hDPts[i].Time = t
hDPts[i].Count = val.count
hDPts[i].Scale = int32(val.scale)
hDPts[i].Scale = val.scale
hDPts[i].ZeroCount = val.zeroCount
hDPts[i].ZeroThreshold = 0.0
hDPts[i].PositiveBucket.Offset = int32(val.posBuckets.startBin)
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
hDPts[i].NegativeBucket.Offset = int32(val.negBuckets.startBin)
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
@@ -407,15 +408,15 @@ func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int {
hDPts[i].StartTime = e.start
hDPts[i].Time = t
hDPts[i].Count = val.count
hDPts[i].Scale = int32(val.scale)
hDPts[i].Scale = val.scale
hDPts[i].ZeroCount = val.zeroCount
hDPts[i].ZeroThreshold = 0.0
hDPts[i].PositiveBucket.Offset = int32(val.posBuckets.startBin)
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
hDPts[i].NegativeBucket.Offset = int32(val.negBuckets.startBin)
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)

View File

@@ -0,0 +1,50 @@
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
)
// FilteredExemplarReservoir wraps a [exemplar.Reservoir] with a filter.
type FilteredExemplarReservoir[N int64 | float64] interface {
// Offer accepts the parameters associated with a measurement. The
// parameters will be stored as an exemplar if the filter decides to
// sample the measurement.
//
// The passed ctx needs to contain any baggage or span that were active
// when the measurement was made. This information may be used by the
// Reservoir in making a sampling decision.
Offer(ctx context.Context, val N, attr []attribute.KeyValue)
// Collect returns all the held exemplars in the reservoir.
Collect(dest *[]exemplar.Exemplar)
}
// filteredExemplarReservoir handles the pre-sampled exemplar of measurements made.
type filteredExemplarReservoir[N int64 | float64] struct {
filter exemplar.Filter
reservoir exemplar.Reservoir
}
// NewFilteredExemplarReservoir creates a [FilteredExemplarReservoir] which only offers values
// that are allowed by the filter.
func NewFilteredExemplarReservoir[N int64 | float64](f exemplar.Filter, r exemplar.Reservoir) FilteredExemplarReservoir[N] {
return &filteredExemplarReservoir[N]{
filter: f,
reservoir: r,
}
}
func (f *filteredExemplarReservoir[N]) Offer(ctx context.Context, val N, attr []attribute.KeyValue) {
if f.filter(ctx) {
// only record the current time if we are sampling this measurement.
f.reservoir.Offer(ctx, time.Now(), exemplar.NewValue(val), attr)
}
}
func (f *filteredExemplarReservoir[N]) Collect(dest *[]exemplar.Exemplar) { f.reservoir.Collect(dest) }

View File

@@ -11,13 +11,12 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
attrs attribute.Set
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
counts []uint64
count uint64
@@ -48,13 +47,13 @@ type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
newRes func() exemplar.FilteredReservoir[N]
newRes func() FilteredExemplarReservoir[N]
limit limiter[*buckets[N]]
values map[attribute.Distinct]*buckets[N]
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() FilteredExemplarReservoir[N]) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
@@ -109,7 +108,7 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() FilteredExemplarReservoir[N]) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum, limit, r),
noMinMax: noMinMax,

View File

@@ -9,7 +9,6 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@@ -17,10 +16,10 @@ import (
type datapoint[N int64 | float64] struct {
attrs attribute.Set
value N
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
}
func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *lastValue[N] {
func newLastValue[N int64 | float64](limit int, r func() FilteredExemplarReservoir[N]) *lastValue[N] {
return &lastValue[N]{
newRes: r,
limit: newLimiter[datapoint[N]](limit),
@@ -33,7 +32,7 @@ func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReserv
type lastValue[N int64 | float64] struct {
sync.Mutex
newRes func() exemplar.FilteredReservoir[N]
newRes func() FilteredExemplarReservoir[N]
limit limiter[datapoint[N]]
values map[attribute.Distinct]datapoint[N]
start time.Time
@@ -115,7 +114,7 @@ func (s *lastValue[N]) copyDpts(dest *[]metricdata.DataPoint[N], t time.Time) in
// newPrecomputedLastValue returns an aggregator that summarizes a set of
// observations as the last one made.
func newPrecomputedLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *precomputedLastValue[N] {
func newPrecomputedLastValue[N int64 | float64](limit int, r func() FilteredExemplarReservoir[N]) *precomputedLastValue[N] {
return &precomputedLastValue[N]{lastValue: newLastValue[N](limit, r)}
}

View File

@@ -9,25 +9,24 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type sumValue[N int64 | float64] struct {
n N
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
attrs attribute.Set
}
// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
sync.Mutex
newRes func() exemplar.FilteredReservoir[N]
newRes func() FilteredExemplarReservoir[N]
limit limiter[sumValue[N]]
values map[attribute.Distinct]sumValue[N]
}
func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
func newValueMap[N int64 | float64](limit int, r func() FilteredExemplarReservoir[N]) *valueMap[N] {
return &valueMap[N]{
newRes: r,
limit: newLimiter[sumValue[N]](limit),
@@ -55,7 +54,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
func newSum[N int64 | float64](monotonic bool, limit int, r func() FilteredExemplarReservoir[N]) *sum[N] {
return &sum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@@ -142,9 +141,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
}
// newPrecomputedSum returns an aggregator that summarizes a set of
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
// observations as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() FilteredExemplarReservoir[N]) *precomputedSum[N] {
return &precomputedSum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@@ -152,7 +151,7 @@ func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() ex
}
}
// precomputedSum summarizes a set of observatrions as their arithmetic sum.
// precomputedSum summarizes a set of observations as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
*valueMap[N]