go.mod: golang.org/x/crypto v0.1.0

Signed-off-by: Akihiro Suda <akihiro.suda.cz@hco.ntt.co.jp>
This commit is contained in:
Akihiro Suda
2022-11-15 09:24:53 +09:00
parent 3690cb12e6
commit 4dda2ad58b
215 changed files with 19992 additions and 2319 deletions

View File

@ -191,7 +191,7 @@ func appendTableSize(dst []byte, v uint32) []byte {
// bit prefix, to dst and returns the extended buffer.
//
// See
// http://http2.github.io/http2-spec/compression.html#integer.representation
// https://httpwg.org/specs/rfc7541.html#integer.representation
func appendVarInt(dst []byte, n byte, i uint64) []byte {
k := uint64((1 << n) - 1)
if i < k {

View File

@ -59,7 +59,7 @@ func (hf HeaderField) String() string {
// Size returns the size of an entry per RFC 7541 section 4.1.
func (hf HeaderField) Size() uint32 {
// http://http2.github.io/http2-spec/compression.html#rfc.section.4.1
// https://httpwg.org/specs/rfc7541.html#rfc.section.4.1
// "The size of the dynamic table is the sum of the size of
// its entries. The size of an entry is the sum of its name's
// length in octets (as defined in Section 5.2), its value's
@ -158,7 +158,7 @@ func (d *Decoder) SetAllowedMaxDynamicTableSize(v uint32) {
}
type dynamicTable struct {
// http://http2.github.io/http2-spec/compression.html#rfc.section.2.3.2
// https://httpwg.org/specs/rfc7541.html#rfc.section.2.3.2
table headerFieldTable
size uint32 // in bytes
maxSize uint32 // current maxSize
@ -307,27 +307,27 @@ func (d *Decoder) parseHeaderFieldRepr() error {
case b&128 != 0:
// Indexed representation.
// High bit set?
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.1
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.1
return d.parseFieldIndexed()
case b&192 == 64:
// 6.2.1 Literal Header Field with Incremental Indexing
// 0b10xxxxxx: top two bits are 10
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.1
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.1
return d.parseFieldLiteral(6, indexedTrue)
case b&240 == 0:
// 6.2.2 Literal Header Field without Indexing
// 0b0000xxxx: top four bits are 0000
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.2
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.2
return d.parseFieldLiteral(4, indexedFalse)
case b&240 == 16:
// 6.2.3 Literal Header Field never Indexed
// 0b0001xxxx: top four bits are 0001
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.3
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.2.3
return d.parseFieldLiteral(4, indexedNever)
case b&224 == 32:
// 6.3 Dynamic Table Size Update
// Top three bits are '001'.
// http://http2.github.io/http2-spec/compression.html#rfc.section.6.3
// https://httpwg.org/specs/rfc7541.html#rfc.section.6.3
return d.parseDynamicTableSizeUpdate()
}
@ -420,7 +420,7 @@ var errVarintOverflow = DecodingError{errors.New("varint integer overflow")}
// readVarInt reads an unsigned variable length integer off the
// beginning of p. n is the parameter as described in
// http://http2.github.io/http2-spec/compression.html#rfc.section.5.1.
// https://httpwg.org/specs/rfc7541.html#rfc.section.5.1.
//
// n must always be between 1 and 8.
//

View File

@ -169,25 +169,50 @@ func buildRootHuffmanNode() {
// AppendHuffmanString appends s, as encoded in Huffman codes, to dst
// and returns the extended buffer.
func AppendHuffmanString(dst []byte, s string) []byte {
rembits := uint8(8)
// This relies on the maximum huffman code length being 30 (See tables.go huffmanCodeLen array)
// So if a uint64 buffer has less than 32 valid bits can always accommodate another huffmanCode.
var (
x uint64 // buffer
n uint // number valid of bits present in x
)
for i := 0; i < len(s); i++ {
if rembits == 8 {
dst = append(dst, 0)
c := s[i]
n += uint(huffmanCodeLen[c])
x <<= huffmanCodeLen[c] % 64
x |= uint64(huffmanCodes[c])
if n >= 32 {
n %= 32 // Normally would be -= 32 but %= 32 informs compiler 0 <= n <= 31 for upcoming shift
y := uint32(x >> n) // Compiler doesn't combine memory writes if y isn't uint32
dst = append(dst, byte(y>>24), byte(y>>16), byte(y>>8), byte(y))
}
dst, rembits = appendByteToHuffmanCode(dst, rembits, s[i])
}
if rembits < 8 {
// special EOS symbol
code := uint32(0x3fffffff)
nbits := uint8(30)
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
// Add padding bits if necessary
if over := n % 8; over > 0 {
const (
eosCode = 0x3fffffff
eosNBits = 30
eosPadByte = eosCode >> (eosNBits - 8)
)
pad := 8 - over
x = (x << pad) | (eosPadByte >> over)
n += pad // 8 now divides into n exactly
}
return dst
// n in (0, 8, 16, 24, 32)
switch n / 8 {
case 0:
return dst
case 1:
return append(dst, byte(x))
case 2:
y := uint16(x)
return append(dst, byte(y>>8), byte(y))
case 3:
y := uint16(x >> 8)
return append(dst, byte(y>>8), byte(y), byte(x))
}
// case 4:
y := uint32(x)
return append(dst, byte(y>>24), byte(y>>16), byte(y>>8), byte(y))
}
// HuffmanEncodeLength returns the number of bytes required to encode
@ -199,35 +224,3 @@ func HuffmanEncodeLength(s string) uint64 {
}
return (n + 7) / 8
}
// appendByteToHuffmanCode appends Huffman code for c to dst and
// returns the extended buffer and the remaining bits in the last
// element. The appending is not byte aligned and the remaining bits
// in the last element of dst is given in rembits.
func appendByteToHuffmanCode(dst []byte, rembits uint8, c byte) ([]byte, uint8) {
code := huffmanCodes[c]
nbits := huffmanCodeLen[c]
for {
if rembits > nbits {
t := uint8(code << (rembits - nbits))
dst[len(dst)-1] |= t
rembits -= nbits
break
}
t := uint8(code >> (nbits - rembits))
dst[len(dst)-1] |= t
nbits -= rembits
rembits = 8
if nbits == 0 {
break
}
dst = append(dst, 0)
}
return dst, rembits
}