vendor: golang.org/x/exp v0.0.0-20241108190413-2d47ceb2692f

full diff: 701f63a606...2d47ceb269

Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
Sebastiaan van Stijn
2025-02-07 01:18:22 +01:00
parent 5176c38115
commit 689bea7963
50 changed files with 2738 additions and 862 deletions

View File

@ -28,7 +28,7 @@ import (
func NewAlias(enabled bool, pos token.Pos, pkg *types.Package, name string, rhs types.Type, tparams []*types.TypeParam) *types.TypeName {
if enabled {
tname := types.NewTypeName(pos, pkg, name, nil)
newAlias(tname, rhs, tparams)
SetTypeParams(types.NewAlias(tname, rhs), tparams)
return tname
}
if len(tparams) > 0 {

View File

@ -1,37 +0,0 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.22
// +build !go1.22
package aliases
import (
"go/types"
)
// Alias is a placeholder for a go/types.Alias for <=1.21.
// It will never be created by go/types.
type Alias struct{}
func (*Alias) String() string { panic("unreachable") }
func (*Alias) Underlying() types.Type { panic("unreachable") }
func (*Alias) Obj() *types.TypeName { panic("unreachable") }
func Rhs(alias *Alias) types.Type { panic("unreachable") }
func TypeParams(alias *Alias) *types.TypeParamList { panic("unreachable") }
func SetTypeParams(alias *Alias, tparams []*types.TypeParam) { panic("unreachable") }
func TypeArgs(alias *Alias) *types.TypeList { panic("unreachable") }
func Origin(alias *Alias) *Alias { panic("unreachable") }
// Unalias returns the type t for go <=1.21.
func Unalias(t types.Type) types.Type { return t }
func newAlias(name *types.TypeName, rhs types.Type, tparams []*types.TypeParam) *Alias {
panic("unreachable")
}
// Enabled reports whether [NewAlias] should create [types.Alias] types.
//
// Before go1.22, this function always returns false.
func Enabled() bool { return false }

View File

@ -2,9 +2,6 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.22
// +build go1.22
package aliases
import (
@ -14,22 +11,19 @@ import (
"go/types"
)
// Alias is an alias of types.Alias.
type Alias = types.Alias
// Rhs returns the type on the right-hand side of the alias declaration.
func Rhs(alias *Alias) types.Type {
func Rhs(alias *types.Alias) types.Type {
if alias, ok := any(alias).(interface{ Rhs() types.Type }); ok {
return alias.Rhs() // go1.23+
}
// go1.22's Alias didn't have the Rhs method,
// so Unalias is the best we can do.
return Unalias(alias)
return types.Unalias(alias)
}
// TypeParams returns the type parameter list of the alias.
func TypeParams(alias *Alias) *types.TypeParamList {
func TypeParams(alias *types.Alias) *types.TypeParamList {
if alias, ok := any(alias).(interface{ TypeParams() *types.TypeParamList }); ok {
return alias.TypeParams() // go1.23+
}
@ -37,7 +31,7 @@ func TypeParams(alias *Alias) *types.TypeParamList {
}
// SetTypeParams sets the type parameters of the alias type.
func SetTypeParams(alias *Alias, tparams []*types.TypeParam) {
func SetTypeParams(alias *types.Alias, tparams []*types.TypeParam) {
if alias, ok := any(alias).(interface {
SetTypeParams(tparams []*types.TypeParam)
}); ok {
@ -48,7 +42,7 @@ func SetTypeParams(alias *Alias, tparams []*types.TypeParam) {
}
// TypeArgs returns the type arguments used to instantiate the Alias type.
func TypeArgs(alias *Alias) *types.TypeList {
func TypeArgs(alias *types.Alias) *types.TypeList {
if alias, ok := any(alias).(interface{ TypeArgs() *types.TypeList }); ok {
return alias.TypeArgs() // go1.23+
}
@ -57,25 +51,13 @@ func TypeArgs(alias *Alias) *types.TypeList {
// Origin returns the generic Alias type of which alias is an instance.
// If alias is not an instance of a generic alias, Origin returns alias.
func Origin(alias *Alias) *Alias {
func Origin(alias *types.Alias) *types.Alias {
if alias, ok := any(alias).(interface{ Origin() *types.Alias }); ok {
return alias.Origin() // go1.23+
}
return alias // not an instance of a generic alias (go1.22)
}
// Unalias is a wrapper of types.Unalias.
func Unalias(t types.Type) types.Type { return types.Unalias(t) }
// newAlias is an internal alias around types.NewAlias.
// Direct usage is discouraged as the moment.
// Try to use NewAlias instead.
func newAlias(tname *types.TypeName, rhs types.Type, tparams []*types.TypeParam) *Alias {
a := types.NewAlias(tname, rhs)
SetTypeParams(a, tparams)
return a
}
// Enabled reports whether [NewAlias] should create [types.Alias] types.
//
// This function is expensive! Call it sparingly.
@ -91,7 +73,7 @@ func Enabled() bool {
// many tests. Therefore any attempt to cache the result
// is just incorrect.
fset := token.NewFileSet()
f, _ := parser.ParseFile(fset, "a.go", "package p; type A = int", 0)
f, _ := parser.ParseFile(fset, "a.go", "package p; type A = int", parser.SkipObjectResolution)
pkg, _ := new(types.Config).Check("p", fset, []*ast.File{f}, nil)
_, enabled := pkg.Scope().Lookup("A").Type().(*types.Alias)
return enabled

View File

@ -87,64 +87,3 @@ func chanDir(d int) types.ChanDir {
return 0
}
}
var predeclOnce sync.Once
var predecl []types.Type // initialized lazily
func predeclared() []types.Type {
predeclOnce.Do(func() {
// initialize lazily to be sure that all
// elements have been initialized before
predecl = []types.Type{ // basic types
types.Typ[types.Bool],
types.Typ[types.Int],
types.Typ[types.Int8],
types.Typ[types.Int16],
types.Typ[types.Int32],
types.Typ[types.Int64],
types.Typ[types.Uint],
types.Typ[types.Uint8],
types.Typ[types.Uint16],
types.Typ[types.Uint32],
types.Typ[types.Uint64],
types.Typ[types.Uintptr],
types.Typ[types.Float32],
types.Typ[types.Float64],
types.Typ[types.Complex64],
types.Typ[types.Complex128],
types.Typ[types.String],
// basic type aliases
types.Universe.Lookup("byte").Type(),
types.Universe.Lookup("rune").Type(),
// error
types.Universe.Lookup("error").Type(),
// untyped types
types.Typ[types.UntypedBool],
types.Typ[types.UntypedInt],
types.Typ[types.UntypedRune],
types.Typ[types.UntypedFloat],
types.Typ[types.UntypedComplex],
types.Typ[types.UntypedString],
types.Typ[types.UntypedNil],
// package unsafe
types.Typ[types.UnsafePointer],
// invalid type
types.Typ[types.Invalid], // only appears in packages with errors
// used internally by gc; never used by this package or in .a files
anyType{},
}
predecl = append(predecl, additionalPredeclared()...)
})
return predecl
}
type anyType struct{}
func (t anyType) Underlying() types.Type { return t }
func (t anyType) String() string { return "any" }

View File

@ -232,14 +232,19 @@ func Import(packages map[string]*types.Package, path, srcDir string, lookup func
// Select appropriate importer.
if len(data) > 0 {
switch data[0] {
case 'v', 'c', 'd': // binary, till go1.10
case 'v', 'c', 'd':
// binary: emitted by cmd/compile till go1.10; obsolete.
return nil, fmt.Errorf("binary (%c) import format is no longer supported", data[0])
case 'i': // indexed, till go1.19
case 'i':
// indexed: emitted by cmd/compile till go1.19;
// now used only for serializing go/types.
// See https://github.com/golang/go/issues/69491.
_, pkg, err := IImportData(fset, packages, data[1:], id)
return pkg, err
case 'u': // unified, from go1.20
case 'u':
// unified: emitted by cmd/compile since go1.20.
_, pkg, err := UImportData(fset, packages, data[1:size], id)
return pkg, err

View File

@ -242,11 +242,30 @@ import (
"golang.org/x/tools/go/types/objectpath"
"golang.org/x/tools/internal/aliases"
"golang.org/x/tools/internal/tokeninternal"
)
// IExportShallow encodes "shallow" export data for the specified package.
//
// For types, we use "shallow" export data. Historically, the Go
// compiler always produced a summary of the types for a given package
// that included types from other packages that it indirectly
// referenced: "deep" export data. This had the advantage that the
// compiler (and analogous tools such as gopls) need only load one
// file per direct import. However, it meant that the files tended to
// get larger based on the level of the package in the import
// graph. For example, higher-level packages in the kubernetes module
// have over 1MB of "deep" export data, even when they have almost no
// content of their own, merely because they mention a major type that
// references many others. In pathological cases the export data was
// 300x larger than the source for a package due to this quadratic
// growth.
//
// "Shallow" export data means that the serialized types describe only
// a single package. If those types mention types from other packages,
// the type checker may need to request additional packages beyond
// just the direct imports. Type information for the entire transitive
// closure of imports is provided (lazily) by the DAG.
//
// No promises are made about the encoding other than that it can be decoded by
// the same version of IIExportShallow. If you plan to save export data in the
// file system, be sure to include a cryptographic digest of the executable in
@ -269,8 +288,8 @@ func IExportShallow(fset *token.FileSet, pkg *types.Package, reportf ReportFunc)
}
// IImportShallow decodes "shallow" types.Package data encoded by
// IExportShallow in the same executable. This function cannot import data from
// cmd/compile or gcexportdata.Write.
// [IExportShallow] in the same executable. This function cannot import data
// from cmd/compile or gcexportdata.Write.
//
// The importer calls getPackages to obtain package symbols for all
// packages mentioned in the export data, including the one being
@ -441,7 +460,7 @@ func (p *iexporter) encodeFile(w *intWriter, file *token.File, needed []uint64)
// Sort the set of needed offsets. Duplicates are harmless.
sort.Slice(needed, func(i, j int) bool { return needed[i] < needed[j] })
lines := tokeninternal.GetLines(file) // byte offset of each line start
lines := file.Lines() // byte offset of each line start
w.uint64(uint64(len(lines)))
// Rather than record the entire array of line start offsets,
@ -725,13 +744,13 @@ func (p *iexporter) doDecl(obj types.Object) {
case *types.TypeName:
t := obj.Type()
if tparam, ok := aliases.Unalias(t).(*types.TypeParam); ok {
if tparam, ok := types.Unalias(t).(*types.TypeParam); ok {
w.tag(typeParamTag)
w.pos(obj.Pos())
constraint := tparam.Constraint()
if p.version >= iexportVersionGo1_18 {
implicit := false
if iface, _ := aliases.Unalias(constraint).(*types.Interface); iface != nil {
if iface, _ := types.Unalias(constraint).(*types.Interface); iface != nil {
implicit = iface.IsImplicit()
}
w.bool(implicit)
@ -741,7 +760,7 @@ func (p *iexporter) doDecl(obj types.Object) {
}
if obj.IsAlias() {
alias, materialized := t.(*aliases.Alias) // may fail when aliases are not enabled
alias, materialized := t.(*types.Alias) // may fail when aliases are not enabled
var tparams *types.TypeParamList
if materialized {
@ -975,7 +994,7 @@ func (w *exportWriter) doTyp(t types.Type, pkg *types.Package) {
}()
}
switch t := t.(type) {
case *aliases.Alias:
case *types.Alias:
if targs := aliases.TypeArgs(t); targs.Len() > 0 {
w.startType(instanceType)
w.pos(t.Obj().Pos())
@ -1091,7 +1110,7 @@ func (w *exportWriter) doTyp(t types.Type, pkg *types.Package) {
for i := 0; i < n; i++ {
ft := t.EmbeddedType(i)
tPkg := pkg
if named, _ := aliases.Unalias(ft).(*types.Named); named != nil {
if named, _ := types.Unalias(ft).(*types.Named); named != nil {
w.pos(named.Obj().Pos())
} else {
w.pos(token.NoPos)

View File

@ -53,6 +53,7 @@ const (
iexportVersionPosCol = 1
iexportVersionGo1_18 = 2
iexportVersionGenerics = 2
iexportVersion = iexportVersionGenerics
iexportVersionCurrent = 2
)
@ -540,7 +541,7 @@ func canReuse(def *types.Named, rhs types.Type) bool {
if def == nil {
return true
}
iface, _ := aliases.Unalias(rhs).(*types.Interface)
iface, _ := types.Unalias(rhs).(*types.Interface)
if iface == nil {
return true
}
@ -557,6 +558,14 @@ type importReader struct {
prevColumn int64
}
// markBlack is redefined in iimport_go123.go, to work around golang/go#69912.
//
// If TypeNames are not marked black (in the sense of go/types cycle
// detection), they may be mutated when dot-imported. Fix this by punching a
// hole through the type, when compiling with Go 1.23. (The bug has been fixed
// for 1.24, but the fix was not worth back-porting).
var markBlack = func(name *types.TypeName) {}
func (r *importReader) obj(name string) {
tag := r.byte()
pos := r.pos()
@ -569,6 +578,7 @@ func (r *importReader) obj(name string) {
}
typ := r.typ()
obj := aliases.NewAlias(r.p.aliases, pos, r.currPkg, name, typ, tparams)
markBlack(obj) // workaround for golang/go#69912
r.declare(obj)
case constTag:
@ -589,6 +599,9 @@ func (r *importReader) obj(name string) {
// declaration before recursing.
obj := types.NewTypeName(pos, r.currPkg, name, nil)
named := types.NewNamed(obj, nil, nil)
markBlack(obj) // workaround for golang/go#69912
// Declare obj before calling r.tparamList, so the new type name is recognized
// if used in the constraint of one of its own typeparams (see #48280).
r.declare(obj)
@ -615,7 +628,7 @@ func (r *importReader) obj(name string) {
if targs.Len() > 0 {
rparams = make([]*types.TypeParam, targs.Len())
for i := range rparams {
rparams[i] = aliases.Unalias(targs.At(i)).(*types.TypeParam)
rparams[i] = types.Unalias(targs.At(i)).(*types.TypeParam)
}
}
msig := r.signature(recv, rparams, nil)
@ -645,7 +658,7 @@ func (r *importReader) obj(name string) {
}
constraint := r.typ()
if implicit {
iface, _ := aliases.Unalias(constraint).(*types.Interface)
iface, _ := types.Unalias(constraint).(*types.Interface)
if iface == nil {
errorf("non-interface constraint marked implicit")
}
@ -852,7 +865,7 @@ func (r *importReader) typ() types.Type {
}
func isInterface(t types.Type) bool {
_, ok := aliases.Unalias(t).(*types.Interface)
_, ok := types.Unalias(t).(*types.Interface)
return ok
}
@ -959,7 +972,7 @@ func (r *importReader) doType(base *types.Named) (res types.Type) {
methods[i] = method
}
typ := newInterface(methods, embeddeds)
typ := types.NewInterfaceType(methods, embeddeds)
r.p.interfaceList = append(r.p.interfaceList, typ)
return typ
@ -1051,7 +1064,7 @@ func (r *importReader) tparamList() []*types.TypeParam {
for i := range xs {
// Note: the standard library importer is tolerant of nil types here,
// though would panic in SetTypeParams.
xs[i] = aliases.Unalias(r.typ()).(*types.TypeParam)
xs[i] = types.Unalias(r.typ()).(*types.TypeParam)
}
return xs
}

View File

@ -0,0 +1,53 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.22 && !go1.24
package gcimporter
import (
"go/token"
"go/types"
"unsafe"
)
// TODO(rfindley): delete this workaround once go1.24 is assured.
func init() {
// Update markBlack so that it correctly sets the color
// of imported TypeNames.
//
// See the doc comment for markBlack for details.
type color uint32
const (
white color = iota
black
grey
)
type object struct {
_ *types.Scope
_ token.Pos
_ *types.Package
_ string
_ types.Type
_ uint32
color_ color
_ token.Pos
}
type typeName struct {
object
}
// If the size of types.TypeName changes, this will fail to compile.
const delta = int64(unsafe.Sizeof(typeName{})) - int64(unsafe.Sizeof(types.TypeName{}))
var _ [-delta * delta]int
markBlack = func(obj *types.TypeName) {
type uP = unsafe.Pointer
var ptr *typeName
*(*uP)(uP(&ptr)) = uP(obj)
ptr.color_ = black
}
}

View File

@ -1,22 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.11
// +build !go1.11
package gcimporter
import "go/types"
func newInterface(methods []*types.Func, embeddeds []types.Type) *types.Interface {
named := make([]*types.Named, len(embeddeds))
for i, e := range embeddeds {
var ok bool
named[i], ok = e.(*types.Named)
if !ok {
panic("embedding of non-defined interfaces in interfaces is not supported before Go 1.11")
}
}
return types.NewInterface(methods, named)
}

View File

@ -1,14 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.11
// +build go1.11
package gcimporter
import "go/types"
func newInterface(methods []*types.Func, embeddeds []types.Type) *types.Interface {
return types.NewInterfaceType(methods, embeddeds)
}

View File

@ -0,0 +1,91 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gcimporter
import (
"go/types"
"sync"
)
// predecl is a cache for the predeclared types in types.Universe.
//
// Cache a distinct result based on the runtime value of any.
// The pointer value of the any type varies based on GODEBUG settings.
var predeclMu sync.Mutex
var predecl map[types.Type][]types.Type
func predeclared() []types.Type {
anyt := types.Universe.Lookup("any").Type()
predeclMu.Lock()
defer predeclMu.Unlock()
if pre, ok := predecl[anyt]; ok {
return pre
}
if predecl == nil {
predecl = make(map[types.Type][]types.Type)
}
decls := []types.Type{ // basic types
types.Typ[types.Bool],
types.Typ[types.Int],
types.Typ[types.Int8],
types.Typ[types.Int16],
types.Typ[types.Int32],
types.Typ[types.Int64],
types.Typ[types.Uint],
types.Typ[types.Uint8],
types.Typ[types.Uint16],
types.Typ[types.Uint32],
types.Typ[types.Uint64],
types.Typ[types.Uintptr],
types.Typ[types.Float32],
types.Typ[types.Float64],
types.Typ[types.Complex64],
types.Typ[types.Complex128],
types.Typ[types.String],
// basic type aliases
types.Universe.Lookup("byte").Type(),
types.Universe.Lookup("rune").Type(),
// error
types.Universe.Lookup("error").Type(),
// untyped types
types.Typ[types.UntypedBool],
types.Typ[types.UntypedInt],
types.Typ[types.UntypedRune],
types.Typ[types.UntypedFloat],
types.Typ[types.UntypedComplex],
types.Typ[types.UntypedString],
types.Typ[types.UntypedNil],
// package unsafe
types.Typ[types.UnsafePointer],
// invalid type
types.Typ[types.Invalid], // only appears in packages with errors
// used internally by gc; never used by this package or in .a files
anyType{},
// comparable
types.Universe.Lookup("comparable").Type(),
// any
anyt,
}
predecl[anyt] = decls
return decls
}
type anyType struct{}
func (t anyType) Underlying() types.Type { return t }
func (t anyType) String() string { return "any" }

View File

@ -1,34 +0,0 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gcimporter
import "go/types"
const iexportVersion = iexportVersionGenerics
// additionalPredeclared returns additional predeclared types in go.1.18.
func additionalPredeclared() []types.Type {
return []types.Type{
// comparable
types.Universe.Lookup("comparable").Type(),
// any
types.Universe.Lookup("any").Type(),
}
}
// See cmd/compile/internal/types.SplitVargenSuffix.
func splitVargenSuffix(name string) (base, suffix string) {
i := len(name)
for i > 0 && name[i-1] >= '0' && name[i-1] <= '9' {
i--
}
const dot = "·"
if i >= len(dot) && name[i-len(dot):i] == dot {
i -= len(dot)
return name[:i], name[i:]
}
return name, ""
}

View File

@ -1,10 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !goexperiment.unified
// +build !goexperiment.unified
package gcimporter
const unifiedIR = false

View File

@ -1,10 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build goexperiment.unified
// +build goexperiment.unified
package gcimporter
const unifiedIR = true

View File

@ -562,7 +562,7 @@ func (pr *pkgReader) objIdx(idx pkgbits.Index) (*types.Package, string) {
// If the underlying type is an interface, we need to
// duplicate its methods so we can replace the receiver
// parameter's type (#49906).
if iface, ok := aliases.Unalias(underlying).(*types.Interface); ok && iface.NumExplicitMethods() != 0 {
if iface, ok := types.Unalias(underlying).(*types.Interface); ok && iface.NumExplicitMethods() != 0 {
methods := make([]*types.Func, iface.NumExplicitMethods())
for i := range methods {
fn := iface.ExplicitMethod(i)
@ -738,3 +738,17 @@ func pkgScope(pkg *types.Package) *types.Scope {
}
return types.Universe
}
// See cmd/compile/internal/types.SplitVargenSuffix.
func splitVargenSuffix(name string) (base, suffix string) {
i := len(name)
for i > 0 && name[i-1] >= '0' && name[i-1] <= '9' {
i--
}
const dot = "·"
if i >= len(dot) && name[i-len(dot):i] == dot {
i -= len(dot)
return name[:i], name[i:]
}
return name, ""
}

View File

@ -16,7 +16,6 @@ import (
"os"
"os/exec"
"path/filepath"
"reflect"
"regexp"
"runtime"
"strconv"
@ -250,16 +249,13 @@ func (i *Invocation) run(ctx context.Context, stdout, stderr io.Writer) error {
cmd.Stdout = stdout
cmd.Stderr = stderr
// cmd.WaitDelay was added only in go1.20 (see #50436).
if waitDelay := reflect.ValueOf(cmd).Elem().FieldByName("WaitDelay"); waitDelay.IsValid() {
// https://go.dev/issue/59541: don't wait forever copying stderr
// after the command has exited.
// After CL 484741 we copy stdout manually, so we we'll stop reading that as
// soon as ctx is done. However, we also don't want to wait around forever
// for stderr. Give a much-longer-than-reasonable delay and then assume that
// something has wedged in the kernel or runtime.
waitDelay.Set(reflect.ValueOf(30 * time.Second))
}
// https://go.dev/issue/59541: don't wait forever copying stderr
// after the command has exited.
// After CL 484741 we copy stdout manually, so we we'll stop reading that as
// soon as ctx is done. However, we also don't want to wait around forever
// for stderr. Give a much-longer-than-reasonable delay and then assume that
// something has wedged in the kernel or runtime.
cmd.WaitDelay = 30 * time.Second
// The cwd gets resolved to the real path. On Darwin, where
// /tmp is a symlink, this breaks anything that expects the

View File

@ -1,137 +0,0 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package tokeninternal provides access to some internal features of the token
// package.
package tokeninternal
import (
"fmt"
"go/token"
"sort"
"sync"
"unsafe"
)
// GetLines returns the table of line-start offsets from a token.File.
func GetLines(file *token.File) []int {
// token.File has a Lines method on Go 1.21 and later.
if file, ok := (interface{})(file).(interface{ Lines() []int }); ok {
return file.Lines()
}
// This declaration must match that of token.File.
// This creates a risk of dependency skew.
// For now we check that the size of the two
// declarations is the same, on the (fragile) assumption
// that future changes would add fields.
type tokenFile119 struct {
_ string
_ int
_ int
mu sync.Mutex // we're not complete monsters
lines []int
_ []struct{}
}
if unsafe.Sizeof(*file) != unsafe.Sizeof(tokenFile119{}) {
panic("unexpected token.File size")
}
var ptr *tokenFile119
type uP = unsafe.Pointer
*(*uP)(uP(&ptr)) = uP(file)
ptr.mu.Lock()
defer ptr.mu.Unlock()
return ptr.lines
}
// AddExistingFiles adds the specified files to the FileSet if they
// are not already present. It panics if any pair of files in the
// resulting FileSet would overlap.
func AddExistingFiles(fset *token.FileSet, files []*token.File) {
// Punch through the FileSet encapsulation.
type tokenFileSet struct {
// This type remained essentially consistent from go1.16 to go1.21.
mutex sync.RWMutex
base int
files []*token.File
_ *token.File // changed to atomic.Pointer[token.File] in go1.19
}
// If the size of token.FileSet changes, this will fail to compile.
const delta = int64(unsafe.Sizeof(tokenFileSet{})) - int64(unsafe.Sizeof(token.FileSet{}))
var _ [-delta * delta]int
type uP = unsafe.Pointer
var ptr *tokenFileSet
*(*uP)(uP(&ptr)) = uP(fset)
ptr.mutex.Lock()
defer ptr.mutex.Unlock()
// Merge and sort.
newFiles := append(ptr.files, files...)
sort.Slice(newFiles, func(i, j int) bool {
return newFiles[i].Base() < newFiles[j].Base()
})
// Reject overlapping files.
// Discard adjacent identical files.
out := newFiles[:0]
for i, file := range newFiles {
if i > 0 {
prev := newFiles[i-1]
if file == prev {
continue
}
if prev.Base()+prev.Size()+1 > file.Base() {
panic(fmt.Sprintf("file %s (%d-%d) overlaps with file %s (%d-%d)",
prev.Name(), prev.Base(), prev.Base()+prev.Size(),
file.Name(), file.Base(), file.Base()+file.Size()))
}
}
out = append(out, file)
}
newFiles = out
ptr.files = newFiles
// Advance FileSet.Base().
if len(newFiles) > 0 {
last := newFiles[len(newFiles)-1]
newBase := last.Base() + last.Size() + 1
if ptr.base < newBase {
ptr.base = newBase
}
}
}
// FileSetFor returns a new FileSet containing a sequence of new Files with
// the same base, size, and line as the input files, for use in APIs that
// require a FileSet.
//
// Precondition: the input files must be non-overlapping, and sorted in order
// of their Base.
func FileSetFor(files ...*token.File) *token.FileSet {
fset := token.NewFileSet()
for _, f := range files {
f2 := fset.AddFile(f.Name(), f.Base(), f.Size())
lines := GetLines(f)
f2.SetLines(lines)
}
return fset
}
// CloneFileSet creates a new FileSet holding all files in fset. It does not
// create copies of the token.Files in fset: they are added to the resulting
// FileSet unmodified.
func CloneFileSet(fset *token.FileSet) *token.FileSet {
var files []*token.File
fset.Iterate(func(f *token.File) bool {
files = append(files, f)
return true
})
newFileSet := token.NewFileSet()
AddExistingFiles(newFileSet, files)
return newFileSet
}

140
vendor/golang.org/x/tools/internal/typeparams/common.go generated vendored Normal file
View File

@ -0,0 +1,140 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package typeparams contains common utilities for writing tools that
// interact with generic Go code, as introduced with Go 1.18. It
// supplements the standard library APIs. Notably, the StructuralTerms
// API computes a minimal representation of the structural
// restrictions on a type parameter.
//
// An external version of these APIs is available in the
// golang.org/x/exp/typeparams module.
package typeparams
import (
"go/ast"
"go/token"
"go/types"
)
// UnpackIndexExpr extracts data from AST nodes that represent index
// expressions.
//
// For an ast.IndexExpr, the resulting indices slice will contain exactly one
// index expression. For an ast.IndexListExpr (go1.18+), it may have a variable
// number of index expressions.
//
// For nodes that don't represent index expressions, the first return value of
// UnpackIndexExpr will be nil.
func UnpackIndexExpr(n ast.Node) (x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) {
switch e := n.(type) {
case *ast.IndexExpr:
return e.X, e.Lbrack, []ast.Expr{e.Index}, e.Rbrack
case *ast.IndexListExpr:
return e.X, e.Lbrack, e.Indices, e.Rbrack
}
return nil, token.NoPos, nil, token.NoPos
}
// PackIndexExpr returns an *ast.IndexExpr or *ast.IndexListExpr, depending on
// the cardinality of indices. Calling PackIndexExpr with len(indices) == 0
// will panic.
func PackIndexExpr(x ast.Expr, lbrack token.Pos, indices []ast.Expr, rbrack token.Pos) ast.Expr {
switch len(indices) {
case 0:
panic("empty indices")
case 1:
return &ast.IndexExpr{
X: x,
Lbrack: lbrack,
Index: indices[0],
Rbrack: rbrack,
}
default:
return &ast.IndexListExpr{
X: x,
Lbrack: lbrack,
Indices: indices,
Rbrack: rbrack,
}
}
}
// IsTypeParam reports whether t is a type parameter (or an alias of one).
func IsTypeParam(t types.Type) bool {
_, ok := types.Unalias(t).(*types.TypeParam)
return ok
}
// GenericAssignableTo is a generalization of types.AssignableTo that
// implements the following rule for uninstantiated generic types:
//
// If V and T are generic named types, then V is considered assignable to T if,
// for every possible instantiation of V[A_1, ..., A_N], the instantiation
// T[A_1, ..., A_N] is valid and V[A_1, ..., A_N] implements T[A_1, ..., A_N].
//
// If T has structural constraints, they must be satisfied by V.
//
// For example, consider the following type declarations:
//
// type Interface[T any] interface {
// Accept(T)
// }
//
// type Container[T any] struct {
// Element T
// }
//
// func (c Container[T]) Accept(t T) { c.Element = t }
//
// In this case, GenericAssignableTo reports that instantiations of Container
// are assignable to the corresponding instantiation of Interface.
func GenericAssignableTo(ctxt *types.Context, V, T types.Type) bool {
V = types.Unalias(V)
T = types.Unalias(T)
// If V and T are not both named, or do not have matching non-empty type
// parameter lists, fall back on types.AssignableTo.
VN, Vnamed := V.(*types.Named)
TN, Tnamed := T.(*types.Named)
if !Vnamed || !Tnamed {
return types.AssignableTo(V, T)
}
vtparams := VN.TypeParams()
ttparams := TN.TypeParams()
if vtparams.Len() == 0 || vtparams.Len() != ttparams.Len() || VN.TypeArgs().Len() != 0 || TN.TypeArgs().Len() != 0 {
return types.AssignableTo(V, T)
}
// V and T have the same (non-zero) number of type params. Instantiate both
// with the type parameters of V. This must always succeed for V, and will
// succeed for T if and only if the type set of each type parameter of V is a
// subset of the type set of the corresponding type parameter of T, meaning
// that every instantiation of V corresponds to a valid instantiation of T.
// Minor optimization: ensure we share a context across the two
// instantiations below.
if ctxt == nil {
ctxt = types.NewContext()
}
var targs []types.Type
for i := 0; i < vtparams.Len(); i++ {
targs = append(targs, vtparams.At(i))
}
vinst, err := types.Instantiate(ctxt, V, targs, true)
if err != nil {
panic("type parameters should satisfy their own constraints")
}
tinst, err := types.Instantiate(ctxt, T, targs, true)
if err != nil {
return false
}
return types.AssignableTo(vinst, tinst)
}

View File

@ -0,0 +1,150 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"fmt"
"go/types"
)
// CoreType returns the core type of T or nil if T does not have a core type.
//
// See https://go.dev/ref/spec#Core_types for the definition of a core type.
func CoreType(T types.Type) types.Type {
U := T.Underlying()
if _, ok := U.(*types.Interface); !ok {
return U // for non-interface types,
}
terms, err := NormalTerms(U)
if len(terms) == 0 || err != nil {
// len(terms) -> empty type set of interface.
// err != nil => U is invalid, exceeds complexity bounds, or has an empty type set.
return nil // no core type.
}
U = terms[0].Type().Underlying()
var identical int // i in [0,identical) => Identical(U, terms[i].Type().Underlying())
for identical = 1; identical < len(terms); identical++ {
if !types.Identical(U, terms[identical].Type().Underlying()) {
break
}
}
if identical == len(terms) {
// https://go.dev/ref/spec#Core_types
// "There is a single type U which is the underlying type of all types in the type set of T"
return U
}
ch, ok := U.(*types.Chan)
if !ok {
return nil // no core type as identical < len(terms) and U is not a channel.
}
// https://go.dev/ref/spec#Core_types
// "the type chan E if T contains only bidirectional channels, or the type chan<- E or
// <-chan E depending on the direction of the directional channels present."
for chans := identical; chans < len(terms); chans++ {
curr, ok := terms[chans].Type().Underlying().(*types.Chan)
if !ok {
return nil
}
if !types.Identical(ch.Elem(), curr.Elem()) {
return nil // channel elements are not identical.
}
if ch.Dir() == types.SendRecv {
// ch is bidirectional. We can safely always use curr's direction.
ch = curr
} else if curr.Dir() != types.SendRecv && ch.Dir() != curr.Dir() {
// ch and curr are not bidirectional and not the same direction.
return nil
}
}
return ch
}
// NormalTerms returns a slice of terms representing the normalized structural
// type restrictions of a type, if any.
//
// For all types other than *types.TypeParam, *types.Interface, and
// *types.Union, this is just a single term with Tilde() == false and
// Type() == typ. For *types.TypeParam, *types.Interface, and *types.Union, see
// below.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration type
// T[P interface{~int; m()}] int the structural restriction of the type
// parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
// type A interface{ ~string|~[]byte }
//
// type B interface{ int|string }
//
// type C interface { ~string|~int }
//
// type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// NormalTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, NormalTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the type is
// invalid, exceeds complexity bounds, or has an empty type set. In the latter
// case, NormalTerms returns ErrEmptyTypeSet.
//
// NormalTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func NormalTerms(typ types.Type) ([]*types.Term, error) {
switch typ := typ.Underlying().(type) {
case *types.TypeParam:
return StructuralTerms(typ)
case *types.Union:
return UnionTermSet(typ)
case *types.Interface:
return InterfaceTermSet(typ)
default:
return []*types.Term{types.NewTerm(false, typ)}, nil
}
}
// Deref returns the type of the variable pointed to by t,
// if t's core type is a pointer; otherwise it returns t.
//
// Do not assume that Deref(T)==T implies T is not a pointer:
// consider "type T *T", for example.
//
// TODO(adonovan): ideally this would live in typesinternal, but that
// creates an import cycle. Move there when we melt this package down.
func Deref(t types.Type) types.Type {
if ptr, ok := CoreType(t).(*types.Pointer); ok {
return ptr.Elem()
}
return t
}
// MustDeref returns the type of the variable pointed to by t.
// It panics if t's core type is not a pointer.
//
// TODO(adonovan): ideally this would live in typesinternal, but that
// creates an import cycle. Move there when we melt this package down.
func MustDeref(t types.Type) types.Type {
if ptr, ok := CoreType(t).(*types.Pointer); ok {
return ptr.Elem()
}
panic(fmt.Sprintf("%v is not a pointer", t))
}

131
vendor/golang.org/x/tools/internal/typeparams/free.go generated vendored Normal file
View File

@ -0,0 +1,131 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"go/types"
"golang.org/x/tools/internal/aliases"
)
// Free is a memoization of the set of free type parameters within a
// type. It makes a sequence of calls to [Free.Has] for overlapping
// types more efficient. The zero value is ready for use.
//
// NOTE: Adapted from go/types/infer.go. If it is later exported, factor.
type Free struct {
seen map[types.Type]bool
}
// Has reports whether the specified type has a free type parameter.
func (w *Free) Has(typ types.Type) (res bool) {
// detect cycles
if x, ok := w.seen[typ]; ok {
return x
}
if w.seen == nil {
w.seen = make(map[types.Type]bool)
}
w.seen[typ] = false
defer func() {
w.seen[typ] = res
}()
switch t := typ.(type) {
case nil, *types.Basic: // TODO(gri) should nil be handled here?
break
case *types.Alias:
if aliases.TypeParams(t).Len() > aliases.TypeArgs(t).Len() {
return true // This is an uninstantiated Alias.
}
// The expansion of an alias can have free type parameters,
// whether or not the alias itself has type parameters:
//
// func _[K comparable]() {
// type Set = map[K]bool // free(Set) = {K}
// type MapTo[V] = map[K]V // free(Map[foo]) = {V}
// }
//
// So, we must Unalias.
return w.Has(types.Unalias(t))
case *types.Array:
return w.Has(t.Elem())
case *types.Slice:
return w.Has(t.Elem())
case *types.Struct:
for i, n := 0, t.NumFields(); i < n; i++ {
if w.Has(t.Field(i).Type()) {
return true
}
}
case *types.Pointer:
return w.Has(t.Elem())
case *types.Tuple:
n := t.Len()
for i := 0; i < n; i++ {
if w.Has(t.At(i).Type()) {
return true
}
}
case *types.Signature:
// t.tparams may not be nil if we are looking at a signature
// of a generic function type (or an interface method) that is
// part of the type we're testing. We don't care about these type
// parameters.
// Similarly, the receiver of a method may declare (rather than
// use) type parameters, we don't care about those either.
// Thus, we only need to look at the input and result parameters.
return w.Has(t.Params()) || w.Has(t.Results())
case *types.Interface:
for i, n := 0, t.NumMethods(); i < n; i++ {
if w.Has(t.Method(i).Type()) {
return true
}
}
terms, err := InterfaceTermSet(t)
if err != nil {
return false // ill typed
}
for _, term := range terms {
if w.Has(term.Type()) {
return true
}
}
case *types.Map:
return w.Has(t.Key()) || w.Has(t.Elem())
case *types.Chan:
return w.Has(t.Elem())
case *types.Named:
args := t.TypeArgs()
if params := t.TypeParams(); params.Len() > args.Len() {
return true // this is an uninstantiated named type.
}
for i, n := 0, args.Len(); i < n; i++ {
if w.Has(args.At(i)) {
return true
}
}
return w.Has(t.Underlying()) // recurse for types local to parameterized functions
case *types.TypeParam:
return true
default:
panic(t) // unreachable
}
return false
}

View File

@ -0,0 +1,218 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typeparams
import (
"errors"
"fmt"
"go/types"
"os"
"strings"
)
//go:generate go run copytermlist.go
const debug = false
var ErrEmptyTypeSet = errors.New("empty type set")
// StructuralTerms returns a slice of terms representing the normalized
// structural type restrictions of a type parameter, if any.
//
// Structural type restrictions of a type parameter are created via
// non-interface types embedded in its constraint interface (directly, or via a
// chain of interface embeddings). For example, in the declaration
//
// type T[P interface{~int; m()}] int
//
// the structural restriction of the type parameter P is ~int.
//
// With interface embedding and unions, the specification of structural type
// restrictions may be arbitrarily complex. For example, consider the
// following:
//
// type A interface{ ~string|~[]byte }
//
// type B interface{ int|string }
//
// type C interface { ~string|~int }
//
// type T[P interface{ A|B; C }] int
//
// In this example, the structural type restriction of P is ~string|int: A|B
// expands to ~string|~[]byte|int|string, which reduces to ~string|~[]byte|int,
// which when intersected with C (~string|~int) yields ~string|int.
//
// StructuralTerms computes these expansions and reductions, producing a
// "normalized" form of the embeddings. A structural restriction is normalized
// if it is a single union containing no interface terms, and is minimal in the
// sense that removing any term changes the set of types satisfying the
// constraint. It is left as a proof for the reader that, modulo sorting, there
// is exactly one such normalized form.
//
// Because the minimal representation always takes this form, StructuralTerms
// returns a slice of tilde terms corresponding to the terms of the union in
// the normalized structural restriction. An error is returned if the
// constraint interface is invalid, exceeds complexity bounds, or has an empty
// type set. In the latter case, StructuralTerms returns ErrEmptyTypeSet.
//
// StructuralTerms makes no guarantees about the order of terms, except that it
// is deterministic.
func StructuralTerms(tparam *types.TypeParam) ([]*types.Term, error) {
constraint := tparam.Constraint()
if constraint == nil {
return nil, fmt.Errorf("%s has nil constraint", tparam)
}
iface, _ := constraint.Underlying().(*types.Interface)
if iface == nil {
return nil, fmt.Errorf("constraint is %T, not *types.Interface", constraint.Underlying())
}
return InterfaceTermSet(iface)
}
// InterfaceTermSet computes the normalized terms for a constraint interface,
// returning an error if the term set cannot be computed or is empty. In the
// latter case, the error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func InterfaceTermSet(iface *types.Interface) ([]*types.Term, error) {
return computeTermSet(iface)
}
// UnionTermSet computes the normalized terms for a union, returning an error
// if the term set cannot be computed or is empty. In the latter case, the
// error will be ErrEmptyTypeSet.
//
// See the documentation of StructuralTerms for more information on
// normalization.
func UnionTermSet(union *types.Union) ([]*types.Term, error) {
return computeTermSet(union)
}
func computeTermSet(typ types.Type) ([]*types.Term, error) {
tset, err := computeTermSetInternal(typ, make(map[types.Type]*termSet), 0)
if err != nil {
return nil, err
}
if tset.terms.isEmpty() {
return nil, ErrEmptyTypeSet
}
if tset.terms.isAll() {
return nil, nil
}
var terms []*types.Term
for _, term := range tset.terms {
terms = append(terms, types.NewTerm(term.tilde, term.typ))
}
return terms, nil
}
// A termSet holds the normalized set of terms for a given type.
//
// The name termSet is intentionally distinct from 'type set': a type set is
// all types that implement a type (and includes method restrictions), whereas
// a term set just represents the structural restrictions on a type.
type termSet struct {
complete bool
terms termlist
}
func indentf(depth int, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, strings.Repeat(".", depth)+format+"\n", args...)
}
func computeTermSetInternal(t types.Type, seen map[types.Type]*termSet, depth int) (res *termSet, err error) {
if t == nil {
panic("nil type")
}
if debug {
indentf(depth, "%s", t.String())
defer func() {
if err != nil {
indentf(depth, "=> %s", err)
} else {
indentf(depth, "=> %s", res.terms.String())
}
}()
}
const maxTermCount = 100
if tset, ok := seen[t]; ok {
if !tset.complete {
return nil, fmt.Errorf("cycle detected in the declaration of %s", t)
}
return tset, nil
}
// Mark the current type as seen to avoid infinite recursion.
tset := new(termSet)
defer func() {
tset.complete = true
}()
seen[t] = tset
switch u := t.Underlying().(type) {
case *types.Interface:
// The term set of an interface is the intersection of the term sets of its
// embedded types.
tset.terms = allTermlist
for i := 0; i < u.NumEmbeddeds(); i++ {
embedded := u.EmbeddedType(i)
if _, ok := embedded.Underlying().(*types.TypeParam); ok {
return nil, fmt.Errorf("invalid embedded type %T", embedded)
}
tset2, err := computeTermSetInternal(embedded, seen, depth+1)
if err != nil {
return nil, err
}
tset.terms = tset.terms.intersect(tset2.terms)
}
case *types.Union:
// The term set of a union is the union of term sets of its terms.
tset.terms = nil
for i := 0; i < u.Len(); i++ {
t := u.Term(i)
var terms termlist
switch t.Type().Underlying().(type) {
case *types.Interface:
tset2, err := computeTermSetInternal(t.Type(), seen, depth+1)
if err != nil {
return nil, err
}
terms = tset2.terms
case *types.TypeParam, *types.Union:
// A stand-alone type parameter or union is not permitted as union
// term.
return nil, fmt.Errorf("invalid union term %T", t)
default:
if t.Type() == types.Typ[types.Invalid] {
continue
}
terms = termlist{{t.Tilde(), t.Type()}}
}
tset.terms = tset.terms.union(terms)
if len(tset.terms) > maxTermCount {
return nil, fmt.Errorf("exceeded max term count %d", maxTermCount)
}
}
case *types.TypeParam:
panic("unreachable")
default:
// For all other types, the term set is just a single non-tilde term
// holding the type itself.
if u != types.Typ[types.Invalid] {
tset.terms = termlist{{false, t}}
}
}
return tset, nil
}
// under is a facade for the go/types internal function of the same name. It is
// used by typeterm.go.
func under(t types.Type) types.Type {
return t.Underlying()
}

View File

@ -0,0 +1,163 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import (
"bytes"
"go/types"
)
// A termlist represents the type set represented by the union
// t1 y2 ... tn of the type sets of the terms t1 to tn.
// A termlist is in normal form if all terms are disjoint.
// termlist operations don't require the operands to be in
// normal form.
type termlist []*term
// allTermlist represents the set of all types.
// It is in normal form.
var allTermlist = termlist{new(term)}
// String prints the termlist exactly (without normalization).
func (xl termlist) String() string {
if len(xl) == 0 {
return "∅"
}
var buf bytes.Buffer
for i, x := range xl {
if i > 0 {
buf.WriteString(" | ")
}
buf.WriteString(x.String())
}
return buf.String()
}
// isEmpty reports whether the termlist xl represents the empty set of types.
func (xl termlist) isEmpty() bool {
// If there's a non-nil term, the entire list is not empty.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil {
return false
}
}
return true
}
// isAll reports whether the termlist xl represents the set of all types.
func (xl termlist) isAll() bool {
// If there's a 𝓤 term, the entire list is 𝓤.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil && x.typ == nil {
return true
}
}
return false
}
// norm returns the normal form of xl.
func (xl termlist) norm() termlist {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
used := make([]bool, len(xl))
var rl termlist
for i, xi := range xl {
if xi == nil || used[i] {
continue
}
for j := i + 1; j < len(xl); j++ {
xj := xl[j]
if xj == nil || used[j] {
continue
}
if u1, u2 := xi.union(xj); u2 == nil {
// If we encounter a 𝓤 term, the entire list is 𝓤.
// Exit early.
// (Note that this is not just an optimization;
// if we continue, we may end up with a 𝓤 term
// and other terms and the result would not be
// in normal form.)
if u1.typ == nil {
return allTermlist
}
xi = u1
used[j] = true // xj is now unioned into xi - ignore it in future iterations
}
}
rl = append(rl, xi)
}
return rl
}
// union returns the union xl yl.
func (xl termlist) union(yl termlist) termlist {
return append(xl, yl...).norm()
}
// intersect returns the intersection xl ∩ yl.
func (xl termlist) intersect(yl termlist) termlist {
if xl.isEmpty() || yl.isEmpty() {
return nil
}
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var rl termlist
for _, x := range xl {
for _, y := range yl {
if r := x.intersect(y); r != nil {
rl = append(rl, r)
}
}
}
return rl.norm()
}
// equal reports whether xl and yl represent the same type set.
func (xl termlist) equal(yl termlist) bool {
// TODO(gri) this should be more efficient
return xl.subsetOf(yl) && yl.subsetOf(xl)
}
// includes reports whether t ∈ xl.
func (xl termlist) includes(t types.Type) bool {
for _, x := range xl {
if x.includes(t) {
return true
}
}
return false
}
// supersetOf reports whether y ⊆ xl.
func (xl termlist) supersetOf(y *term) bool {
for _, x := range xl {
if y.subsetOf(x) {
return true
}
}
return false
}
// subsetOf reports whether xl ⊆ yl.
func (xl termlist) subsetOf(yl termlist) bool {
if yl.isEmpty() {
return xl.isEmpty()
}
// each term x of xl must be a subset of yl
for _, x := range xl {
if !yl.supersetOf(x) {
return false // x is not a subset yl
}
}
return true
}

View File

@ -0,0 +1,169 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by copytermlist.go DO NOT EDIT.
package typeparams
import "go/types"
// A term describes elementary type sets:
//
// ∅: (*term)(nil) == ∅ // set of no types (empty set)
// 𝓤: &term{} == 𝓤 // set of all types (𝓤niverse)
// T: &term{false, T} == {T} // set of type T
// ~t: &term{true, t} == {t' | under(t') == t} // set of types with underlying type t
type term struct {
tilde bool // valid if typ != nil
typ types.Type
}
func (x *term) String() string {
switch {
case x == nil:
return "∅"
case x.typ == nil:
return "𝓤"
case x.tilde:
return "~" + x.typ.String()
default:
return x.typ.String()
}
}
// equal reports whether x and y represent the same type set.
func (x *term) equal(y *term) bool {
// easy cases
switch {
case x == nil || y == nil:
return x == y
case x.typ == nil || y.typ == nil:
return x.typ == y.typ
}
// ∅ ⊂ x, y ⊂ 𝓤
return x.tilde == y.tilde && types.Identical(x.typ, y.typ)
}
// union returns the union x y: zero, one, or two non-nil terms.
func (x *term) union(y *term) (_, _ *term) {
// easy cases
switch {
case x == nil && y == nil:
return nil, nil // ∅ ∅ == ∅
case x == nil:
return y, nil // ∅ y == y
case y == nil:
return x, nil // x ∅ == x
case x.typ == nil:
return x, nil // 𝓤 y == 𝓤
case y.typ == nil:
return y, nil // x 𝓤 == 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return x, y // x y == (x, y) if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ~t == ~t
// ~t T == ~t
// T ~t == ~t
// T T == T
if x.tilde || !y.tilde {
return x, nil
}
return y, nil
}
// intersect returns the intersection x ∩ y.
func (x *term) intersect(y *term) *term {
// easy cases
switch {
case x == nil || y == nil:
return nil // ∅ ∩ y == ∅ and ∩ ∅ == ∅
case x.typ == nil:
return y // 𝓤 ∩ y == y
case y.typ == nil:
return x // x ∩ 𝓤 == x
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return nil // x ∩ y == ∅ if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ∩ ~t == ~t
// ~t ∩ T == T
// T ∩ ~t == T
// T ∩ T == T
if !x.tilde || y.tilde {
return x
}
return y
}
// includes reports whether t ∈ x.
func (x *term) includes(t types.Type) bool {
// easy cases
switch {
case x == nil:
return false // t ∈ ∅ == false
case x.typ == nil:
return true // t ∈ 𝓤 == true
}
// ∅ ⊂ x ⊂ 𝓤
u := t
if x.tilde {
u = under(u)
}
return types.Identical(x.typ, u)
}
// subsetOf reports whether x ⊆ y.
func (x *term) subsetOf(y *term) bool {
// easy cases
switch {
case x == nil:
return true // ∅ ⊆ y == true
case y == nil:
return false // x ⊆ ∅ == false since x != ∅
case y.typ == nil:
return true // x ⊆ 𝓤 == true
case x.typ == nil:
return false // 𝓤 ⊆ y == false since y != 𝓤
}
// ∅ ⊂ x, y ⊂ 𝓤
if x.disjoint(y) {
return false // x ⊆ y == false if x ∩ y == ∅
}
// x.typ == y.typ
// ~t ⊆ ~t == true
// ~t ⊆ T == false
// T ⊆ ~t == true
// T ⊆ T == true
return !x.tilde || y.tilde
}
// disjoint reports whether x ∩ y == ∅.
// x.typ and y.typ must not be nil.
func (x *term) disjoint(y *term) bool {
if debug && (x.typ == nil || y.typ == nil) {
panic("invalid argument(s)")
}
ux := x.typ
if y.tilde {
ux = under(ux)
}
uy := y.typ
if x.tilde {
uy = under(uy)
}
return !types.Identical(ux, uy)
}

View File

@ -0,0 +1,133 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package typesinternal
import (
"fmt"
"go/types"
"golang.org/x/tools/go/types/typeutil"
)
// ForEachElement calls f for type T and each type reachable from its
// type through reflection. It does this by recursively stripping off
// type constructors; in addition, for each named type N, the type *N
// is added to the result as it may have additional methods.
//
// The caller must provide an initially empty set used to de-duplicate
// identical types, potentially across multiple calls to ForEachElement.
// (Its final value holds all the elements seen, matching the arguments
// passed to f.)
//
// TODO(adonovan): share/harmonize with go/callgraph/rta.
func ForEachElement(rtypes *typeutil.Map, msets *typeutil.MethodSetCache, T types.Type, f func(types.Type)) {
var visit func(T types.Type, skip bool)
visit = func(T types.Type, skip bool) {
if !skip {
if seen, _ := rtypes.Set(T, true).(bool); seen {
return // de-dup
}
f(T) // notify caller of new element type
}
// Recursion over signatures of each method.
tmset := msets.MethodSet(T)
for i := 0; i < tmset.Len(); i++ {
sig := tmset.At(i).Type().(*types.Signature)
// It is tempting to call visit(sig, false)
// but, as noted in golang.org/cl/65450043,
// the Signature.Recv field is ignored by
// types.Identical and typeutil.Map, which
// is confusing at best.
//
// More importantly, the true signature rtype
// reachable from a method using reflection
// has no receiver but an extra ordinary parameter.
// For the Read method of io.Reader we want:
// func(Reader, []byte) (int, error)
// but here sig is:
// func([]byte) (int, error)
// with .Recv = Reader (though it is hard to
// notice because it doesn't affect Signature.String
// or types.Identical).
//
// TODO(adonovan): construct and visit the correct
// non-method signature with an extra parameter
// (though since unnamed func types have no methods
// there is essentially no actual demand for this).
//
// TODO(adonovan): document whether or not it is
// safe to skip non-exported methods (as RTA does).
visit(sig.Params(), true) // skip the Tuple
visit(sig.Results(), true) // skip the Tuple
}
switch T := T.(type) {
case *types.Alias:
visit(types.Unalias(T), skip) // emulates the pre-Alias behavior
case *types.Basic:
// nop
case *types.Interface:
// nop---handled by recursion over method set.
case *types.Pointer:
visit(T.Elem(), false)
case *types.Slice:
visit(T.Elem(), false)
case *types.Chan:
visit(T.Elem(), false)
case *types.Map:
visit(T.Key(), false)
visit(T.Elem(), false)
case *types.Signature:
if T.Recv() != nil {
panic(fmt.Sprintf("Signature %s has Recv %s", T, T.Recv()))
}
visit(T.Params(), true) // skip the Tuple
visit(T.Results(), true) // skip the Tuple
case *types.Named:
// A pointer-to-named type can be derived from a named
// type via reflection. It may have methods too.
visit(types.NewPointer(T), false)
// Consider 'type T struct{S}' where S has methods.
// Reflection provides no way to get from T to struct{S},
// only to S, so the method set of struct{S} is unwanted,
// so set 'skip' flag during recursion.
visit(T.Underlying(), true) // skip the unnamed type
case *types.Array:
visit(T.Elem(), false)
case *types.Struct:
for i, n := 0, T.NumFields(); i < n; i++ {
// TODO(adonovan): document whether or not
// it is safe to skip non-exported fields.
visit(T.Field(i).Type(), false)
}
case *types.Tuple:
for i, n := 0, T.Len(); i < n; i++ {
visit(T.At(i).Type(), false)
}
case *types.TypeParam, *types.Union:
// forEachReachable must not be called on parameterized types.
panic(T)
default:
panic(T)
}
}
visit(T, false)
}

View File

@ -6,8 +6,6 @@ package typesinternal
import (
"go/types"
"golang.org/x/tools/internal/aliases"
)
// ReceiverNamed returns the named type (if any) associated with the
@ -15,11 +13,11 @@ import (
// It also reports whether a Pointer was present.
func ReceiverNamed(recv *types.Var) (isPtr bool, named *types.Named) {
t := recv.Type()
if ptr, ok := aliases.Unalias(t).(*types.Pointer); ok {
if ptr, ok := types.Unalias(t).(*types.Pointer); ok {
isPtr = true
t = ptr.Elem()
}
named, _ = aliases.Unalias(t).(*types.Named)
named, _ = types.Unalias(t).(*types.Named)
return
}
@ -36,7 +34,7 @@ func ReceiverNamed(recv *types.Var) (isPtr bool, named *types.Named) {
// indirection from the type, regardless of named types (analogous to
// a LOAD instruction).
func Unpointer(t types.Type) types.Type {
if ptr, ok := aliases.Unalias(t).(*types.Pointer); ok {
if ptr, ok := types.Unalias(t).(*types.Pointer); ok {
return ptr.Elem()
}
return t

View File

@ -11,6 +11,8 @@ import (
"go/types"
"reflect"
"unsafe"
"golang.org/x/tools/internal/aliases"
)
func SetUsesCgo(conf *types.Config) bool {
@ -63,3 +65,57 @@ func NameRelativeTo(pkg *types.Package) types.Qualifier {
return other.Name()
}
}
// A NamedOrAlias is a [types.Type] that is named (as
// defined by the spec) and capable of bearing type parameters: it
// abstracts aliases ([types.Alias]) and defined types
// ([types.Named]).
//
// Every type declared by an explicit "type" declaration is a
// NamedOrAlias. (Built-in type symbols may additionally
// have type [types.Basic], which is not a NamedOrAlias,
// though the spec regards them as "named".)
//
// NamedOrAlias cannot expose the Origin method, because
// [types.Alias.Origin] and [types.Named.Origin] have different
// (covariant) result types; use [Origin] instead.
type NamedOrAlias interface {
types.Type
Obj() *types.TypeName
}
// TypeParams is a light shim around t.TypeParams().
// (go/types.Alias).TypeParams requires >= 1.23.
func TypeParams(t NamedOrAlias) *types.TypeParamList {
switch t := t.(type) {
case *types.Alias:
return aliases.TypeParams(t)
case *types.Named:
return t.TypeParams()
}
return nil
}
// TypeArgs is a light shim around t.TypeArgs().
// (go/types.Alias).TypeArgs requires >= 1.23.
func TypeArgs(t NamedOrAlias) *types.TypeList {
switch t := t.(type) {
case *types.Alias:
return aliases.TypeArgs(t)
case *types.Named:
return t.TypeArgs()
}
return nil
}
// Origin returns the generic type of the Named or Alias type t if it
// is instantiated, otherwise it returns t.
func Origin(t NamedOrAlias) NamedOrAlias {
switch t := t.(type) {
case *types.Alias:
return aliases.Origin(t)
case *types.Named:
return t.Origin()
}
return t
}

View File

@ -1,14 +0,0 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package versions
// toolchain is maximum version (<1.22) that the go toolchain used
// to build the current tool is known to support.
//
// When a tool is built with >=1.22, the value of toolchain is unused.
//
// x/tools does not support building with go <1.18. So we take this
// as the minimum possible maximum.
var toolchain string = Go1_18

View File

@ -1,14 +0,0 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.19
// +build go1.19
package versions
func init() {
if Compare(toolchain, Go1_19) < 0 {
toolchain = Go1_19
}
}

View File

@ -1,14 +0,0 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.20
// +build go1.20
package versions
func init() {
if Compare(toolchain, Go1_20) < 0 {
toolchain = Go1_20
}
}

View File

@ -1,14 +0,0 @@
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.21
// +build go1.21
package versions
func init() {
if Compare(toolchain, Go1_21) < 0 {
toolchain = Go1_21
}
}

View File

@ -5,15 +5,29 @@
package versions
import (
"go/ast"
"go/types"
)
// GoVersion returns the Go version of the type package.
// It returns zero if no version can be determined.
func GoVersion(pkg *types.Package) string {
// TODO(taking): x/tools can call GoVersion() [from 1.21] after 1.25.
if pkg, ok := any(pkg).(interface{ GoVersion() string }); ok {
return pkg.GoVersion()
// FileVersion returns a file's Go version.
// The reported version is an unknown Future version if a
// version cannot be determined.
func FileVersion(info *types.Info, file *ast.File) string {
// In tools built with Go >= 1.22, the Go version of a file
// follow a cascades of sources:
// 1) types.Info.FileVersion, which follows the cascade:
// 1.a) file version (ast.File.GoVersion),
// 1.b) the package version (types.Config.GoVersion), or
// 2) is some unknown Future version.
//
// File versions require a valid package version to be provided to types
// in Config.GoVersion. Config.GoVersion is either from the package's module
// or the toolchain (go run). This value should be provided by go/packages
// or unitchecker.Config.GoVersion.
if v := info.FileVersions[file]; IsValid(v) {
return v
}
return ""
// Note: we could instead return runtime.Version() [if valid].
// This would act as a max version on what a tool can support.
return Future
}

View File

@ -1,30 +0,0 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.22
// +build !go1.22
package versions
import (
"go/ast"
"go/types"
)
// FileVersion returns a language version (<=1.21) derived from runtime.Version()
// or an unknown future version.
func FileVersion(info *types.Info, file *ast.File) string {
// In x/tools built with Go <= 1.21, we do not have Info.FileVersions
// available. We use a go version derived from the toolchain used to
// compile the tool by default.
// This will be <= go1.21. We take this as the maximum version that
// this tool can support.
//
// There are no features currently in x/tools that need to tell fine grained
// differences for versions <1.22.
return toolchain
}
// InitFileVersions is a noop when compiled with this Go version.
func InitFileVersions(*types.Info) {}

View File

@ -1,41 +0,0 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.22
// +build go1.22
package versions
import (
"go/ast"
"go/types"
)
// FileVersion returns a file's Go version.
// The reported version is an unknown Future version if a
// version cannot be determined.
func FileVersion(info *types.Info, file *ast.File) string {
// In tools built with Go >= 1.22, the Go version of a file
// follow a cascades of sources:
// 1) types.Info.FileVersion, which follows the cascade:
// 1.a) file version (ast.File.GoVersion),
// 1.b) the package version (types.Config.GoVersion), or
// 2) is some unknown Future version.
//
// File versions require a valid package version to be provided to types
// in Config.GoVersion. Config.GoVersion is either from the package's module
// or the toolchain (go run). This value should be provided by go/packages
// or unitchecker.Config.GoVersion.
if v := info.FileVersions[file]; IsValid(v) {
return v
}
// Note: we could instead return runtime.Version() [if valid].
// This would act as a max version on what a tool can support.
return Future
}
// InitFileVersions initializes info to record Go versions for Go files.
func InitFileVersions(info *types.Info) {
info.FileVersions = make(map[*ast.File]string)
}