Allow for user defined functions

Signed-off-by: Patrick Van Stee <patrick@vanstee.me>
This commit is contained in:
Patrick Van Stee
2020-04-15 21:00:21 -04:00
parent 10d4b7a878
commit 870b38837b
9 changed files with 383 additions and 9 deletions

View File

@ -0,0 +1,28 @@
# HCL User Functions Extension
This HCL extension allows a calling application to support user-defined
functions.
Functions are defined via a specific block type, like this:
```hcl
function "add" {
params = [a, b]
result = a + b
}
function "list" {
params = []
variadic_param = items
result = items
}
```
The extension is implemented as a pre-processor for `cty.Body` objects. Given
a body that may contain functions, the `DecodeUserFunctions` function searches
for blocks that define functions and returns a functions map suitable for
inclusion in a `hcl.EvalContext`. It also returns a new `cty.Body` that
contains the remainder of the content from the given body, allowing for
further processing of remaining content.
For more information, see [the godoc reference](http://godoc.org/github.com/hashicorp/hcl/v2/ext/userfunc).

View File

@ -0,0 +1,156 @@
package userfunc
import (
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var funcBodySchema = &hcl.BodySchema{
Attributes: []hcl.AttributeSchema{
{
Name: "params",
Required: true,
},
{
Name: "variadic_param",
Required: false,
},
{
Name: "result",
Required: true,
},
},
}
func decodeUserFunctions(body hcl.Body, blockType string, contextFunc ContextFunc) (funcs map[string]function.Function, remain hcl.Body, diags hcl.Diagnostics) {
schema := &hcl.BodySchema{
Blocks: []hcl.BlockHeaderSchema{
{
Type: blockType,
LabelNames: []string{"name"},
},
},
}
content, remain, diags := body.PartialContent(schema)
if diags.HasErrors() {
return nil, remain, diags
}
// first call to getBaseCtx will populate context, and then the same
// context will be used for all subsequent calls. It's assumed that
// all functions in a given body should see an identical context.
var baseCtx *hcl.EvalContext
getBaseCtx := func() *hcl.EvalContext {
if baseCtx == nil {
if contextFunc != nil {
baseCtx = contextFunc()
}
}
// baseCtx might still be nil here, and that's okay
return baseCtx
}
funcs = make(map[string]function.Function)
Blocks:
for _, block := range content.Blocks {
name := block.Labels[0]
funcContent, funcDiags := block.Body.Content(funcBodySchema)
diags = append(diags, funcDiags...)
if funcDiags.HasErrors() {
continue
}
paramsExpr := funcContent.Attributes["params"].Expr
resultExpr := funcContent.Attributes["result"].Expr
var varParamExpr hcl.Expression
if funcContent.Attributes["variadic_param"] != nil {
varParamExpr = funcContent.Attributes["variadic_param"].Expr
}
var params []string
var varParam string
paramExprs, paramsDiags := hcl.ExprList(paramsExpr)
diags = append(diags, paramsDiags...)
if paramsDiags.HasErrors() {
continue
}
for _, paramExpr := range paramExprs {
param := hcl.ExprAsKeyword(paramExpr)
if param == "" {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid param element",
Detail: "Each parameter name must be an identifier.",
Subject: paramExpr.Range().Ptr(),
})
continue Blocks
}
params = append(params, param)
}
if varParamExpr != nil {
varParam = hcl.ExprAsKeyword(varParamExpr)
if varParam == "" {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid variadic_param",
Detail: "The variadic parameter name must be an identifier.",
Subject: varParamExpr.Range().Ptr(),
})
continue
}
}
spec := &function.Spec{}
for _, paramName := range params {
spec.Params = append(spec.Params, function.Parameter{
Name: paramName,
Type: cty.DynamicPseudoType,
})
}
if varParamExpr != nil {
spec.VarParam = &function.Parameter{
Name: varParam,
Type: cty.DynamicPseudoType,
}
}
impl := func(args []cty.Value) (cty.Value, error) {
ctx := getBaseCtx()
ctx = ctx.NewChild()
ctx.Variables = make(map[string]cty.Value)
// The cty function machinery guarantees that we have at least
// enough args to fill all of our params.
for i, paramName := range params {
ctx.Variables[paramName] = args[i]
}
if spec.VarParam != nil {
varArgs := args[len(params):]
ctx.Variables[varParam] = cty.TupleVal(varArgs)
}
result, diags := resultExpr.Value(ctx)
if diags.HasErrors() {
// Smuggle the diagnostics out via the error channel, since
// a diagnostics sequence implements error. Caller can
// type-assert this to recover the individual diagnostics
// if desired.
return cty.DynamicVal, diags
}
return result, nil
}
spec.Type = func(args []cty.Value) (cty.Type, error) {
val, err := impl(args)
return val.Type(), err
}
spec.Impl = func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return impl(args)
}
funcs[name] = function.New(spec)
}
return funcs, remain, diags
}

22
vendor/github.com/hashicorp/hcl/v2/ext/userfunc/doc.go generated vendored Normal file
View File

@ -0,0 +1,22 @@
// Package userfunc implements a HCL extension that allows user-defined
// functions in HCL configuration.
//
// Using this extension requires some integration effort on the part of the
// calling application, to pass any declared functions into a HCL evaluation
// context after processing.
//
// The function declaration syntax looks like this:
//
// function "foo" {
// params = ["name"]
// result = "Hello, ${name}!"
// }
//
// When a user-defined function is called, the expression given for the "result"
// attribute is evaluated in an isolated evaluation context that defines variables
// named after the given parameter names.
//
// The block name "function" may be overridden by the calling application, if
// that default name conflicts with an existing block or attribute name in
// the application.
package userfunc

View File

@ -0,0 +1,42 @@
package userfunc
import (
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty/function"
)
// A ContextFunc is a callback used to produce the base EvalContext for
// running a particular set of functions.
//
// This is a function rather than an EvalContext directly to allow functions
// to be decoded before their context is complete. This will be true, for
// example, for applications that wish to allow functions to refer to themselves.
//
// The simplest use of a ContextFunc is to give user functions access to the
// same global variables and functions available elsewhere in an application's
// configuration language, but more complex applications may use different
// contexts to support lexical scoping depending on where in a configuration
// structure a function declaration is found, etc.
type ContextFunc func() *hcl.EvalContext
// DecodeUserFunctions looks for blocks of the given type in the given body
// and, for each one found, interprets it as a custom function definition.
//
// On success, the result is a mapping of function names to implementations,
// along with a new body that represents the remaining content of the given
// body which can be used for further processing.
//
// The result expression of each function is parsed during decoding but not
// evaluated until the function is called.
//
// If the given ContextFunc is non-nil, it will be called to obtain the
// context in which the function result expressions will be evaluated. If nil,
// or if it returns nil, the result expression will have access only to
// variables named after the declared parameters. A non-nil context turns
// the returned functions into closures, bound to the given context.
//
// If the returned diagnostics set has errors then the function map and
// remain body may be nil or incomplete.
func DecodeUserFunctions(body hcl.Body, blockType string, context ContextFunc) (funcs map[string]function.Function, remain hcl.Body, diags hcl.Diagnostics) {
return decodeUserFunctions(body, blockType, context)
}