Upgrade hcl to v2

Signed-off-by: Patrick Van Stee <patrick@vanstee.me>
This commit is contained in:
Patrick Van Stee
2020-04-15 21:00:17 -04:00
parent 09339bf500
commit 87c4bf1df9
129 changed files with 24573 additions and 4047 deletions

View File

@ -0,0 +1,70 @@
package function
import (
"github.com/zclconf/go-cty/cty"
)
// Parameter represents a parameter to a function.
type Parameter struct {
// Name is an optional name for the argument. This package ignores this
// value, but callers may use it for documentation, etc.
Name string
// A type that any argument for this parameter must conform to.
// cty.DynamicPseudoType can be used, either at top-level or nested
// in a parameterized type, to indicate that any type should be
// permitted, to allow the definition of type-generic functions.
Type cty.Type
// If AllowNull is set then null values may be passed into this
// argument's slot in both the type-check function and the implementation
// function. If not set, such values are rejected by the built-in
// checking rules.
AllowNull bool
// If AllowUnknown is set then unknown values may be passed into this
// argument's slot in the implementation function. If not set, any
// unknown values will cause the function to immediately return
// an unkonwn value without calling the implementation function, thus
// freeing the function implementer from dealing with this case.
AllowUnknown bool
// If AllowDynamicType is set then DynamicVal may be passed into this
// argument's slot in the implementation function. If not set, any
// dynamic values will cause the function to immediately return
// DynamicVal value without calling the implementation function, thus
// freeing the function implementer from dealing with this case.
//
// Note that DynamicVal is also unknown, so in order to receive dynamic
// *values* it is also necessary to set AllowUnknown.
//
// However, it is valid to set AllowDynamicType without AllowUnknown, in
// which case a dynamic value may be passed to the type checking function
// but will not make it to the *implementation* function. Instead, an
// unknown value of the type returned by the type-check function will be
// returned. This is suggested for functions that have a static return
// type since it allows the return value to be typed even if the input
// values are not, thus improving the type-check accuracy of derived
// values.
AllowDynamicType bool
// If AllowMarked is set then marked values may be passed into this
// argument's slot in the implementation function. If not set, any
// marked value will be unmarked before calling and then the markings
// from that value will be applied automatically to the function result,
// ensuring that the marks get propagated in a simplistic way even if
// a function is unable to handle them.
//
// For any argument whose parameter has AllowMarked set, it's the
// function implementation's responsibility to Unmark the given value
// and propagate the marks appropriatedly to the result in order to
// avoid losing the marks. Application-specific functions might use
// special rules to selectively propagate particular marks.
//
// The automatic unmarking of values applies only to the main
// implementation function. In an application that uses marked values,
// the Type implementation for a function must always be prepared to accept
// marked values, which is easy to achieve by consulting only the type
// and ignoring the value itself.
AllowMarked bool
}

6
vendor/github.com/zclconf/go-cty/cty/function/doc.go generated vendored Normal file
View File

@ -0,0 +1,6 @@
// Package function builds on the functionality of cty by modeling functions
// that operate on cty Values.
//
// Functions are, at their core, Go anonymous functions. However, this package
// wraps around them utility functions for parameter type checking, etc.
package function

50
vendor/github.com/zclconf/go-cty/cty/function/error.go generated vendored Normal file
View File

@ -0,0 +1,50 @@
package function
import (
"fmt"
"runtime/debug"
)
// ArgError represents an error with one of the arguments in a call. The
// attribute Index represents the zero-based index of the argument in question.
//
// Its error *may* be a cty.PathError, in which case the error actually
// pertains to a nested value within the data structure passed as the argument.
type ArgError struct {
error
Index int
}
func NewArgErrorf(i int, f string, args ...interface{}) error {
return ArgError{
error: fmt.Errorf(f, args...),
Index: i,
}
}
func NewArgError(i int, err error) error {
return ArgError{
error: err,
Index: i,
}
}
// PanicError indicates that a panic occurred while executing either a
// function's type or implementation function. This is captured and wrapped
// into a normal error so that callers (expected to be language runtimes)
// are freed from having to deal with panics in buggy functions.
type PanicError struct {
Value interface{}
Stack []byte
}
func errorForPanic(val interface{}) error {
return PanicError{
Value: val,
Stack: debug.Stack(),
}
}
func (e PanicError) Error() string {
return fmt.Sprintf("panic in function implementation: %s\n%s", e.Value, e.Stack)
}

View File

@ -0,0 +1,342 @@
package function
import (
"fmt"
"github.com/zclconf/go-cty/cty"
)
// Function represents a function. This is the main type in this package.
type Function struct {
spec *Spec
}
// Spec is the specification of a function, used to instantiate
// a new Function.
type Spec struct {
// Params is a description of the positional parameters for the function.
// The standard checking logic rejects any calls that do not provide
// arguments conforming to this definition, freeing the function
// implementer from dealing with such inconsistencies.
Params []Parameter
// VarParam is an optional specification of additional "varargs" the
// function accepts. If this is non-nil then callers may provide an
// arbitrary number of additional arguments (after those matching with
// the fixed parameters in Params) that conform to the given specification,
// which will appear as additional values in the slices of values
// provided to the type and implementation functions.
VarParam *Parameter
// Type is the TypeFunc that decides the return type of the function
// given its arguments, which may be Unknown. See the documentation
// of TypeFunc for more information.
//
// Use StaticReturnType if the function's return type does not vary
// depending on its arguments.
Type TypeFunc
// Impl is the ImplFunc that implements the function's behavior.
//
// Functions are expected to behave as pure functions, and not create
// any visible side-effects.
//
// If a TypeFunc is also provided, the value returned from Impl *must*
// conform to the type it returns, or a call to the function will panic.
Impl ImplFunc
}
// New creates a new function with the given specification.
//
// After passing a Spec to this function, the caller must no longer read from
// or mutate it.
func New(spec *Spec) Function {
f := Function{
spec: spec,
}
return f
}
// TypeFunc is a callback type for determining the return type of a function
// given its arguments.
//
// Any of the values passed to this function may be unknown, even if the
// parameters are not configured to accept unknowns.
//
// If any of the given values are *not* unknown, the TypeFunc may use the
// values for pre-validation and for choosing the return type. For example,
// a hypothetical JSON-unmarshalling function could return
// cty.DynamicPseudoType if the given JSON string is unknown, but return
// a concrete type based on the JSON structure if the JSON string is already
// known.
type TypeFunc func(args []cty.Value) (cty.Type, error)
// ImplFunc is a callback type for the main implementation of a function.
//
// "args" are the values for the arguments, and this slice will always be at
// least as long as the argument definition slice for the function.
//
// "retType" is the type returned from the Type callback, included as a
// convenience to avoid the need to re-compute the return type for generic
// functions whose return type is a function of the arguments.
type ImplFunc func(args []cty.Value, retType cty.Type) (cty.Value, error)
// StaticReturnType returns a TypeFunc that always returns the given type.
//
// This is provided as a convenience for defining a function whose return
// type does not depend on the argument types.
func StaticReturnType(ty cty.Type) TypeFunc {
return func([]cty.Value) (cty.Type, error) {
return ty, nil
}
}
// ReturnType returns the return type of a function given a set of candidate
// argument types, or returns an error if the given types are unacceptable.
//
// If the caller already knows values for at least some of the arguments
// it can be better to call ReturnTypeForValues, since certain functions may
// determine their return types from their values and return DynamicVal if
// the values are unknown.
func (f Function) ReturnType(argTypes []cty.Type) (cty.Type, error) {
vals := make([]cty.Value, len(argTypes))
for i, ty := range argTypes {
vals[i] = cty.UnknownVal(ty)
}
return f.ReturnTypeForValues(vals)
}
// ReturnTypeForValues is similar to ReturnType but can be used if the caller
// already knows the values of some or all of the arguments, in which case
// the function may be able to determine a more definite result if its
// return type depends on the argument *values*.
//
// For any arguments whose values are not known, pass an Unknown value of
// the appropriate type.
func (f Function) ReturnTypeForValues(args []cty.Value) (ty cty.Type, err error) {
var posArgs []cty.Value
var varArgs []cty.Value
if f.spec.VarParam == nil {
if len(args) != len(f.spec.Params) {
return cty.Type{}, fmt.Errorf(
"wrong number of arguments (%d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args
varArgs = nil
} else {
if len(args) < len(f.spec.Params) {
return cty.Type{}, fmt.Errorf(
"wrong number of arguments (at least %d required; %d given)",
len(f.spec.Params), len(args),
)
}
posArgs = args[0:len(f.spec.Params)]
varArgs = args[len(f.spec.Params):]
}
for i, spec := range f.spec.Params {
val := posArgs[i]
if val.IsMarked() && !spec.AllowMarked {
// During type checking we just unmark values and discard their
// marks, under the assumption that during actual execution of
// the function we'll do similarly and then re-apply the marks
// afterwards. Note that this does mean that a function that
// inspects values (rather than just types) in its Type
// implementation can potentially fail to take into account marks,
// unless it specifically opts in to seeing them.
unmarked, _ := val.Unmark()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, NewArgErrorf(i, "argument must not be null")
}
// AllowUnknown is ignored for type-checking, since we expect to be
// able to type check with unknown values. We *do* still need to deal
// with DynamicPseudoType here though, since the Type function might
// not be ready to deal with that.
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, NewArgError(i, errs[0])
}
}
if varArgs != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
realI := i + len(posArgs)
if val.IsMarked() && !spec.AllowMarked {
// See the similar block in the loop above for what's going on here.
unmarked, _ := val.Unmark()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[realI] = unmarked
args = newArgs
}
if val.IsNull() && !spec.AllowNull {
return cty.Type{}, NewArgErrorf(realI, "argument must not be null")
}
if val.Type() == cty.DynamicPseudoType {
if !spec.AllowDynamicType {
return cty.DynamicPseudoType, nil
}
} else if errs := val.Type().TestConformance(spec.Type); errs != nil {
// For now we'll just return the first error in the set, since
// we don't have a good way to return the whole list here.
// Would be good to do something better at some point...
return cty.Type{}, NewArgError(i, errs[0])
}
}
}
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
ty = cty.NilType
err = errorForPanic(r)
}
}()
return f.spec.Type(args)
}
// Call actually calls the function with the given arguments, which must
// conform to the function's parameter specification or an error will be
// returned.
func (f Function) Call(args []cty.Value) (val cty.Value, err error) {
expectedType, err := f.ReturnTypeForValues(args)
if err != nil {
return cty.NilVal, err
}
// Type checking already dealt with most situations relating to our
// parameter specification, but we still need to deal with unknown
// values and marked values.
posArgs := args[:len(f.spec.Params)]
varArgs := args[len(f.spec.Params):]
var resultMarks []cty.ValueMarks
for i, spec := range f.spec.Params {
val := posArgs[i]
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if val.IsMarked() && !spec.AllowMarked {
unwrappedVal, marks := val.Unmark()
// In order to avoid additional overhead on applications that
// are not using marked values, we copy the given args only
// if we encounter a marked value we need to unmark. However,
// as a consequence we end up doing redundant copying if multiple
// marked values need to be unwrapped. That seems okay because
// argument lists are generally small.
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
if f.spec.VarParam != nil {
spec := f.spec.VarParam
for i, val := range varArgs {
if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil
}
if val.IsMarked() && !spec.AllowMarked {
unwrappedVal, marks := val.Unmark()
newArgs := make([]cty.Value, len(args))
copy(newArgs, args)
newArgs[len(posArgs)+i] = unwrappedVal
resultMarks = append(resultMarks, marks)
args = newArgs
}
}
}
var retVal cty.Value
{
// Intercept any panics from the function and return them as normal errors,
// so a calling language runtime doesn't need to deal with panics.
defer func() {
if r := recover(); r != nil {
val = cty.NilVal
err = errorForPanic(r)
}
}()
retVal, err = f.spec.Impl(args, expectedType)
if err != nil {
return cty.NilVal, err
}
if len(resultMarks) > 0 {
retVal = retVal.WithMarks(resultMarks...)
}
}
// Returned value must conform to what the Type function expected, to
// protect callers from having to deal with inconsistencies.
if errs := retVal.Type().TestConformance(expectedType); errs != nil {
panic(fmt.Errorf(
"returned value %#v does not conform to expected return type %#v: %s",
retVal, expectedType, errs[0],
))
}
return retVal, nil
}
// ProxyFunc the type returned by the method Function.Proxy.
type ProxyFunc func(args ...cty.Value) (cty.Value, error)
// Proxy returns a function that can be called with cty.Value arguments
// to run the function. This is provided as a convenience for when using
// a function directly within Go code.
func (f Function) Proxy() ProxyFunc {
return func(args ...cty.Value) (cty.Value, error) {
return f.Call(args)
}
}
// Params returns information about the function's fixed positional parameters.
// This does not include information about any variadic arguments accepted;
// for that, call VarParam.
func (f Function) Params() []Parameter {
new := make([]Parameter, len(f.spec.Params))
copy(new, f.spec.Params)
return new
}
// VarParam returns information about the variadic arguments the function
// expects, or nil if the function is not variadic.
func (f Function) VarParam() *Parameter {
if f.spec.VarParam == nil {
return nil
}
ret := *f.spec.VarParam
return &ret
}

View File

@ -0,0 +1,31 @@
package function
import (
"github.com/zclconf/go-cty/cty"
)
// Unpredictable wraps a given function such that it retains the same arguments
// and type checking behavior but will return an unknown value when called.
//
// It is recommended that most functions be "pure", which is to say that they
// will always produce the same value given particular input. However,
// sometimes it is necessary to offer functions whose behavior depends on
// some external state, such as reading a file or determining the current time.
// In such cases, an unpredictable wrapper might be used to stand in for
// the function during some sort of prior "checking" phase in order to delay
// the actual effect until later.
//
// While Unpredictable can support a function that isn't pure in its
// implementation, it still expects a function to be pure in its type checking
// behavior, except for the special case of returning cty.DynamicPseudoType
// if it is not yet able to predict its return value based on current argument
// information.
func Unpredictable(f Function) Function {
newSpec := *f.spec // shallow copy
newSpec.Impl = unpredictableImpl
return New(&newSpec)
}
func unpredictableImpl(args []cty.Value, retType cty.Type) (cty.Value, error) {
return cty.UnknownVal(retType), nil
}