mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-11-04 18:13:42 +08:00 
			
		
		
		
	vendor: update buildkit to 539be170
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
		
							
								
								
									
										52
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										52
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519.go
									
									
									
										generated
									
									
										vendored
									
									
								
							@@ -10,6 +10,8 @@ package curve25519 // import "golang.org/x/crypto/curve25519"
 | 
			
		||||
import (
 | 
			
		||||
	"crypto/subtle"
 | 
			
		||||
	"fmt"
 | 
			
		||||
 | 
			
		||||
	"golang.org/x/crypto/curve25519/internal/field"
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
// ScalarMult sets dst to the product scalar * point.
 | 
			
		||||
@@ -18,7 +20,55 @@ import (
 | 
			
		||||
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
 | 
			
		||||
// will return an error.
 | 
			
		||||
func ScalarMult(dst, scalar, point *[32]byte) {
 | 
			
		||||
	scalarMult(dst, scalar, point)
 | 
			
		||||
	var e [32]byte
 | 
			
		||||
 | 
			
		||||
	copy(e[:], scalar[:])
 | 
			
		||||
	e[0] &= 248
 | 
			
		||||
	e[31] &= 127
 | 
			
		||||
	e[31] |= 64
 | 
			
		||||
 | 
			
		||||
	var x1, x2, z2, x3, z3, tmp0, tmp1 field.Element
 | 
			
		||||
	x1.SetBytes(point[:])
 | 
			
		||||
	x2.One()
 | 
			
		||||
	x3.Set(&x1)
 | 
			
		||||
	z3.One()
 | 
			
		||||
 | 
			
		||||
	swap := 0
 | 
			
		||||
	for pos := 254; pos >= 0; pos-- {
 | 
			
		||||
		b := e[pos/8] >> uint(pos&7)
 | 
			
		||||
		b &= 1
 | 
			
		||||
		swap ^= int(b)
 | 
			
		||||
		x2.Swap(&x3, swap)
 | 
			
		||||
		z2.Swap(&z3, swap)
 | 
			
		||||
		swap = int(b)
 | 
			
		||||
 | 
			
		||||
		tmp0.Subtract(&x3, &z3)
 | 
			
		||||
		tmp1.Subtract(&x2, &z2)
 | 
			
		||||
		x2.Add(&x2, &z2)
 | 
			
		||||
		z2.Add(&x3, &z3)
 | 
			
		||||
		z3.Multiply(&tmp0, &x2)
 | 
			
		||||
		z2.Multiply(&z2, &tmp1)
 | 
			
		||||
		tmp0.Square(&tmp1)
 | 
			
		||||
		tmp1.Square(&x2)
 | 
			
		||||
		x3.Add(&z3, &z2)
 | 
			
		||||
		z2.Subtract(&z3, &z2)
 | 
			
		||||
		x2.Multiply(&tmp1, &tmp0)
 | 
			
		||||
		tmp1.Subtract(&tmp1, &tmp0)
 | 
			
		||||
		z2.Square(&z2)
 | 
			
		||||
 | 
			
		||||
		z3.Mult32(&tmp1, 121666)
 | 
			
		||||
		x3.Square(&x3)
 | 
			
		||||
		tmp0.Add(&tmp0, &z3)
 | 
			
		||||
		z3.Multiply(&x1, &z2)
 | 
			
		||||
		z2.Multiply(&tmp1, &tmp0)
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	x2.Swap(&x3, swap)
 | 
			
		||||
	z2.Swap(&z3, swap)
 | 
			
		||||
 | 
			
		||||
	z2.Invert(&z2)
 | 
			
		||||
	x2.Multiply(&x2, &z2)
 | 
			
		||||
	copy(dst[:], x2.Bytes())
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// ScalarBaseMult sets dst to the product scalar * base where base is the
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										241
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										241
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
								
							@@ -1,241 +0,0 @@
 | 
			
		||||
// Copyright 2012 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build amd64 && gc && !purego
 | 
			
		||||
// +build amd64,gc,!purego
 | 
			
		||||
 | 
			
		||||
package curve25519
 | 
			
		||||
 | 
			
		||||
// These functions are implemented in the .s files. The names of the functions
 | 
			
		||||
// in the rest of the file are also taken from the SUPERCOP sources to help
 | 
			
		||||
// people following along.
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
 | 
			
		||||
func cswap(inout *[5]uint64, v uint64)
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
 | 
			
		||||
func ladderstep(inout *[5][5]uint64)
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
 | 
			
		||||
func freeze(inout *[5]uint64)
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
 | 
			
		||||
func mul(dest, a, b *[5]uint64)
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
 | 
			
		||||
func square(out, in *[5]uint64)
 | 
			
		||||
 | 
			
		||||
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
 | 
			
		||||
func mladder(xr, zr *[5]uint64, s *[32]byte) {
 | 
			
		||||
	var work [5][5]uint64
 | 
			
		||||
 | 
			
		||||
	work[0] = *xr
 | 
			
		||||
	setint(&work[1], 1)
 | 
			
		||||
	setint(&work[2], 0)
 | 
			
		||||
	work[3] = *xr
 | 
			
		||||
	setint(&work[4], 1)
 | 
			
		||||
 | 
			
		||||
	j := uint(6)
 | 
			
		||||
	var prevbit byte
 | 
			
		||||
 | 
			
		||||
	for i := 31; i >= 0; i-- {
 | 
			
		||||
		for j < 8 {
 | 
			
		||||
			bit := ((*s)[i] >> j) & 1
 | 
			
		||||
			swap := bit ^ prevbit
 | 
			
		||||
			prevbit = bit
 | 
			
		||||
			cswap(&work[1], uint64(swap))
 | 
			
		||||
			ladderstep(&work)
 | 
			
		||||
			j--
 | 
			
		||||
		}
 | 
			
		||||
		j = 7
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	*xr = work[1]
 | 
			
		||||
	*zr = work[2]
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func scalarMult(out, in, base *[32]byte) {
 | 
			
		||||
	var e [32]byte
 | 
			
		||||
	copy(e[:], (*in)[:])
 | 
			
		||||
	e[0] &= 248
 | 
			
		||||
	e[31] &= 127
 | 
			
		||||
	e[31] |= 64
 | 
			
		||||
 | 
			
		||||
	var t, z [5]uint64
 | 
			
		||||
	unpack(&t, base)
 | 
			
		||||
	mladder(&t, &z, &e)
 | 
			
		||||
	invert(&z, &z)
 | 
			
		||||
	mul(&t, &t, &z)
 | 
			
		||||
	pack(out, &t)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func setint(r *[5]uint64, v uint64) {
 | 
			
		||||
	r[0] = v
 | 
			
		||||
	r[1] = 0
 | 
			
		||||
	r[2] = 0
 | 
			
		||||
	r[3] = 0
 | 
			
		||||
	r[4] = 0
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
 | 
			
		||||
// order.
 | 
			
		||||
func unpack(r *[5]uint64, x *[32]byte) {
 | 
			
		||||
	r[0] = uint64(x[0]) |
 | 
			
		||||
		uint64(x[1])<<8 |
 | 
			
		||||
		uint64(x[2])<<16 |
 | 
			
		||||
		uint64(x[3])<<24 |
 | 
			
		||||
		uint64(x[4])<<32 |
 | 
			
		||||
		uint64(x[5])<<40 |
 | 
			
		||||
		uint64(x[6]&7)<<48
 | 
			
		||||
 | 
			
		||||
	r[1] = uint64(x[6])>>3 |
 | 
			
		||||
		uint64(x[7])<<5 |
 | 
			
		||||
		uint64(x[8])<<13 |
 | 
			
		||||
		uint64(x[9])<<21 |
 | 
			
		||||
		uint64(x[10])<<29 |
 | 
			
		||||
		uint64(x[11])<<37 |
 | 
			
		||||
		uint64(x[12]&63)<<45
 | 
			
		||||
 | 
			
		||||
	r[2] = uint64(x[12])>>6 |
 | 
			
		||||
		uint64(x[13])<<2 |
 | 
			
		||||
		uint64(x[14])<<10 |
 | 
			
		||||
		uint64(x[15])<<18 |
 | 
			
		||||
		uint64(x[16])<<26 |
 | 
			
		||||
		uint64(x[17])<<34 |
 | 
			
		||||
		uint64(x[18])<<42 |
 | 
			
		||||
		uint64(x[19]&1)<<50
 | 
			
		||||
 | 
			
		||||
	r[3] = uint64(x[19])>>1 |
 | 
			
		||||
		uint64(x[20])<<7 |
 | 
			
		||||
		uint64(x[21])<<15 |
 | 
			
		||||
		uint64(x[22])<<23 |
 | 
			
		||||
		uint64(x[23])<<31 |
 | 
			
		||||
		uint64(x[24])<<39 |
 | 
			
		||||
		uint64(x[25]&15)<<47
 | 
			
		||||
 | 
			
		||||
	r[4] = uint64(x[25])>>4 |
 | 
			
		||||
		uint64(x[26])<<4 |
 | 
			
		||||
		uint64(x[27])<<12 |
 | 
			
		||||
		uint64(x[28])<<20 |
 | 
			
		||||
		uint64(x[29])<<28 |
 | 
			
		||||
		uint64(x[30])<<36 |
 | 
			
		||||
		uint64(x[31]&127)<<44
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// pack sets out = x where out is the usual, little-endian form of the 5,
 | 
			
		||||
// 51-bit limbs in x.
 | 
			
		||||
func pack(out *[32]byte, x *[5]uint64) {
 | 
			
		||||
	t := *x
 | 
			
		||||
	freeze(&t)
 | 
			
		||||
 | 
			
		||||
	out[0] = byte(t[0])
 | 
			
		||||
	out[1] = byte(t[0] >> 8)
 | 
			
		||||
	out[2] = byte(t[0] >> 16)
 | 
			
		||||
	out[3] = byte(t[0] >> 24)
 | 
			
		||||
	out[4] = byte(t[0] >> 32)
 | 
			
		||||
	out[5] = byte(t[0] >> 40)
 | 
			
		||||
	out[6] = byte(t[0] >> 48)
 | 
			
		||||
 | 
			
		||||
	out[6] ^= byte(t[1]<<3) & 0xf8
 | 
			
		||||
	out[7] = byte(t[1] >> 5)
 | 
			
		||||
	out[8] = byte(t[1] >> 13)
 | 
			
		||||
	out[9] = byte(t[1] >> 21)
 | 
			
		||||
	out[10] = byte(t[1] >> 29)
 | 
			
		||||
	out[11] = byte(t[1] >> 37)
 | 
			
		||||
	out[12] = byte(t[1] >> 45)
 | 
			
		||||
 | 
			
		||||
	out[12] ^= byte(t[2]<<6) & 0xc0
 | 
			
		||||
	out[13] = byte(t[2] >> 2)
 | 
			
		||||
	out[14] = byte(t[2] >> 10)
 | 
			
		||||
	out[15] = byte(t[2] >> 18)
 | 
			
		||||
	out[16] = byte(t[2] >> 26)
 | 
			
		||||
	out[17] = byte(t[2] >> 34)
 | 
			
		||||
	out[18] = byte(t[2] >> 42)
 | 
			
		||||
	out[19] = byte(t[2] >> 50)
 | 
			
		||||
 | 
			
		||||
	out[19] ^= byte(t[3]<<1) & 0xfe
 | 
			
		||||
	out[20] = byte(t[3] >> 7)
 | 
			
		||||
	out[21] = byte(t[3] >> 15)
 | 
			
		||||
	out[22] = byte(t[3] >> 23)
 | 
			
		||||
	out[23] = byte(t[3] >> 31)
 | 
			
		||||
	out[24] = byte(t[3] >> 39)
 | 
			
		||||
	out[25] = byte(t[3] >> 47)
 | 
			
		||||
 | 
			
		||||
	out[25] ^= byte(t[4]<<4) & 0xf0
 | 
			
		||||
	out[26] = byte(t[4] >> 4)
 | 
			
		||||
	out[27] = byte(t[4] >> 12)
 | 
			
		||||
	out[28] = byte(t[4] >> 20)
 | 
			
		||||
	out[29] = byte(t[4] >> 28)
 | 
			
		||||
	out[30] = byte(t[4] >> 36)
 | 
			
		||||
	out[31] = byte(t[4] >> 44)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// invert calculates r = x^-1 mod p using Fermat's little theorem.
 | 
			
		||||
func invert(r *[5]uint64, x *[5]uint64) {
 | 
			
		||||
	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
 | 
			
		||||
 | 
			
		||||
	square(&z2, x)        /* 2 */
 | 
			
		||||
	square(&t, &z2)       /* 4 */
 | 
			
		||||
	square(&t, &t)        /* 8 */
 | 
			
		||||
	mul(&z9, &t, x)       /* 9 */
 | 
			
		||||
	mul(&z11, &z9, &z2)   /* 11 */
 | 
			
		||||
	square(&t, &z11)      /* 22 */
 | 
			
		||||
	mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &z2_5_0)      /* 2^6 - 2^1 */
 | 
			
		||||
	for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &z2_10_0)      /* 2^11 - 2^1 */
 | 
			
		||||
	for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &z2_20_0)      /* 2^21 - 2^1 */
 | 
			
		||||
	for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &t)            /* 2^41 - 2^1 */
 | 
			
		||||
	for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &z2_50_0)      /* 2^51 - 2^1 */
 | 
			
		||||
	for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &z2_100_0)      /* 2^101 - 2^1 */
 | 
			
		||||
	for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &t)            /* 2^201 - 2^1 */
 | 
			
		||||
	for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
 | 
			
		||||
		square(&t, &t)
 | 
			
		||||
	}
 | 
			
		||||
	mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &t) /* 2^251 - 2^1 */
 | 
			
		||||
	square(&t, &t) /* 2^252 - 2^2 */
 | 
			
		||||
	square(&t, &t) /* 2^253 - 2^3 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &t) /* 2^254 - 2^4 */
 | 
			
		||||
 | 
			
		||||
	square(&t, &t)   /* 2^255 - 2^5 */
 | 
			
		||||
	mul(r, &t, &z11) /* 2^255 - 21 */
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										1793
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										1793
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										828
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_generic.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										828
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_generic.go
									
									
									
										generated
									
									
										vendored
									
									
								
							@@ -1,828 +0,0 @@
 | 
			
		||||
// Copyright 2013 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
package curve25519
 | 
			
		||||
 | 
			
		||||
import "encoding/binary"
 | 
			
		||||
 | 
			
		||||
// This code is a port of the public domain, "ref10" implementation of
 | 
			
		||||
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
 | 
			
		||||
 | 
			
		||||
// fieldElement represents an element of the field GF(2^255 - 19). An element
 | 
			
		||||
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
 | 
			
		||||
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
 | 
			
		||||
// context.
 | 
			
		||||
type fieldElement [10]int32
 | 
			
		||||
 | 
			
		||||
func feZero(fe *fieldElement) {
 | 
			
		||||
	for i := range fe {
 | 
			
		||||
		fe[i] = 0
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feOne(fe *fieldElement) {
 | 
			
		||||
	feZero(fe)
 | 
			
		||||
	fe[0] = 1
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feAdd(dst, a, b *fieldElement) {
 | 
			
		||||
	for i := range dst {
 | 
			
		||||
		dst[i] = a[i] + b[i]
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feSub(dst, a, b *fieldElement) {
 | 
			
		||||
	for i := range dst {
 | 
			
		||||
		dst[i] = a[i] - b[i]
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feCopy(dst, src *fieldElement) {
 | 
			
		||||
	for i := range dst {
 | 
			
		||||
		dst[i] = src[i]
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
 | 
			
		||||
//
 | 
			
		||||
// Preconditions: b in {0,1}.
 | 
			
		||||
func feCSwap(f, g *fieldElement, b int32) {
 | 
			
		||||
	b = -b
 | 
			
		||||
	for i := range f {
 | 
			
		||||
		t := b & (f[i] ^ g[i])
 | 
			
		||||
		f[i] ^= t
 | 
			
		||||
		g[i] ^= t
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// load3 reads a 24-bit, little-endian value from in.
 | 
			
		||||
func load3(in []byte) int64 {
 | 
			
		||||
	var r int64
 | 
			
		||||
	r = int64(in[0])
 | 
			
		||||
	r |= int64(in[1]) << 8
 | 
			
		||||
	r |= int64(in[2]) << 16
 | 
			
		||||
	return r
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// load4 reads a 32-bit, little-endian value from in.
 | 
			
		||||
func load4(in []byte) int64 {
 | 
			
		||||
	return int64(binary.LittleEndian.Uint32(in))
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feFromBytes(dst *fieldElement, src *[32]byte) {
 | 
			
		||||
	h0 := load4(src[:])
 | 
			
		||||
	h1 := load3(src[4:]) << 6
 | 
			
		||||
	h2 := load3(src[7:]) << 5
 | 
			
		||||
	h3 := load3(src[10:]) << 3
 | 
			
		||||
	h4 := load3(src[13:]) << 2
 | 
			
		||||
	h5 := load4(src[16:])
 | 
			
		||||
	h6 := load3(src[20:]) << 7
 | 
			
		||||
	h7 := load3(src[23:]) << 5
 | 
			
		||||
	h8 := load3(src[26:]) << 4
 | 
			
		||||
	h9 := (load3(src[29:]) & 0x7fffff) << 2
 | 
			
		||||
 | 
			
		||||
	var carry [10]int64
 | 
			
		||||
	carry[9] = (h9 + 1<<24) >> 25
 | 
			
		||||
	h0 += carry[9] * 19
 | 
			
		||||
	h9 -= carry[9] << 25
 | 
			
		||||
	carry[1] = (h1 + 1<<24) >> 25
 | 
			
		||||
	h2 += carry[1]
 | 
			
		||||
	h1 -= carry[1] << 25
 | 
			
		||||
	carry[3] = (h3 + 1<<24) >> 25
 | 
			
		||||
	h4 += carry[3]
 | 
			
		||||
	h3 -= carry[3] << 25
 | 
			
		||||
	carry[5] = (h5 + 1<<24) >> 25
 | 
			
		||||
	h6 += carry[5]
 | 
			
		||||
	h5 -= carry[5] << 25
 | 
			
		||||
	carry[7] = (h7 + 1<<24) >> 25
 | 
			
		||||
	h8 += carry[7]
 | 
			
		||||
	h7 -= carry[7] << 25
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + 1<<25) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
	carry[2] = (h2 + 1<<25) >> 26
 | 
			
		||||
	h3 += carry[2]
 | 
			
		||||
	h2 -= carry[2] << 26
 | 
			
		||||
	carry[4] = (h4 + 1<<25) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
	carry[6] = (h6 + 1<<25) >> 26
 | 
			
		||||
	h7 += carry[6]
 | 
			
		||||
	h6 -= carry[6] << 26
 | 
			
		||||
	carry[8] = (h8 + 1<<25) >> 26
 | 
			
		||||
	h9 += carry[8]
 | 
			
		||||
	h8 -= carry[8] << 26
 | 
			
		||||
 | 
			
		||||
	dst[0] = int32(h0)
 | 
			
		||||
	dst[1] = int32(h1)
 | 
			
		||||
	dst[2] = int32(h2)
 | 
			
		||||
	dst[3] = int32(h3)
 | 
			
		||||
	dst[4] = int32(h4)
 | 
			
		||||
	dst[5] = int32(h5)
 | 
			
		||||
	dst[6] = int32(h6)
 | 
			
		||||
	dst[7] = int32(h7)
 | 
			
		||||
	dst[8] = int32(h8)
 | 
			
		||||
	dst[9] = int32(h9)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feToBytes marshals h to s.
 | 
			
		||||
// Preconditions:
 | 
			
		||||
//   |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
 | 
			
		||||
//
 | 
			
		||||
// Write p=2^255-19; q=floor(h/p).
 | 
			
		||||
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
 | 
			
		||||
//
 | 
			
		||||
// Proof:
 | 
			
		||||
//   Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
 | 
			
		||||
//   Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
 | 
			
		||||
//
 | 
			
		||||
//   Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
 | 
			
		||||
//   Then 0<y<1.
 | 
			
		||||
//
 | 
			
		||||
//   Write r=h-pq.
 | 
			
		||||
//   Have 0<=r<=p-1=2^255-20.
 | 
			
		||||
//   Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
 | 
			
		||||
//
 | 
			
		||||
//   Write x=r+19(2^-255)r+y.
 | 
			
		||||
//   Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
 | 
			
		||||
//
 | 
			
		||||
//   Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
 | 
			
		||||
//   so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
 | 
			
		||||
func feToBytes(s *[32]byte, h *fieldElement) {
 | 
			
		||||
	var carry [10]int32
 | 
			
		||||
 | 
			
		||||
	q := (19*h[9] + (1 << 24)) >> 25
 | 
			
		||||
	q = (h[0] + q) >> 26
 | 
			
		||||
	q = (h[1] + q) >> 25
 | 
			
		||||
	q = (h[2] + q) >> 26
 | 
			
		||||
	q = (h[3] + q) >> 25
 | 
			
		||||
	q = (h[4] + q) >> 26
 | 
			
		||||
	q = (h[5] + q) >> 25
 | 
			
		||||
	q = (h[6] + q) >> 26
 | 
			
		||||
	q = (h[7] + q) >> 25
 | 
			
		||||
	q = (h[8] + q) >> 26
 | 
			
		||||
	q = (h[9] + q) >> 25
 | 
			
		||||
 | 
			
		||||
	// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
 | 
			
		||||
	h[0] += 19 * q
 | 
			
		||||
	// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
 | 
			
		||||
 | 
			
		||||
	carry[0] = h[0] >> 26
 | 
			
		||||
	h[1] += carry[0]
 | 
			
		||||
	h[0] -= carry[0] << 26
 | 
			
		||||
	carry[1] = h[1] >> 25
 | 
			
		||||
	h[2] += carry[1]
 | 
			
		||||
	h[1] -= carry[1] << 25
 | 
			
		||||
	carry[2] = h[2] >> 26
 | 
			
		||||
	h[3] += carry[2]
 | 
			
		||||
	h[2] -= carry[2] << 26
 | 
			
		||||
	carry[3] = h[3] >> 25
 | 
			
		||||
	h[4] += carry[3]
 | 
			
		||||
	h[3] -= carry[3] << 25
 | 
			
		||||
	carry[4] = h[4] >> 26
 | 
			
		||||
	h[5] += carry[4]
 | 
			
		||||
	h[4] -= carry[4] << 26
 | 
			
		||||
	carry[5] = h[5] >> 25
 | 
			
		||||
	h[6] += carry[5]
 | 
			
		||||
	h[5] -= carry[5] << 25
 | 
			
		||||
	carry[6] = h[6] >> 26
 | 
			
		||||
	h[7] += carry[6]
 | 
			
		||||
	h[6] -= carry[6] << 26
 | 
			
		||||
	carry[7] = h[7] >> 25
 | 
			
		||||
	h[8] += carry[7]
 | 
			
		||||
	h[7] -= carry[7] << 25
 | 
			
		||||
	carry[8] = h[8] >> 26
 | 
			
		||||
	h[9] += carry[8]
 | 
			
		||||
	h[8] -= carry[8] << 26
 | 
			
		||||
	carry[9] = h[9] >> 25
 | 
			
		||||
	h[9] -= carry[9] << 25
 | 
			
		||||
	// h10 = carry9
 | 
			
		||||
 | 
			
		||||
	// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
 | 
			
		||||
	// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
 | 
			
		||||
	// evidently 2^255 h10-2^255 q = 0.
 | 
			
		||||
	// Goal: Output h[0]+...+2^230 h[9].
 | 
			
		||||
 | 
			
		||||
	s[0] = byte(h[0] >> 0)
 | 
			
		||||
	s[1] = byte(h[0] >> 8)
 | 
			
		||||
	s[2] = byte(h[0] >> 16)
 | 
			
		||||
	s[3] = byte((h[0] >> 24) | (h[1] << 2))
 | 
			
		||||
	s[4] = byte(h[1] >> 6)
 | 
			
		||||
	s[5] = byte(h[1] >> 14)
 | 
			
		||||
	s[6] = byte((h[1] >> 22) | (h[2] << 3))
 | 
			
		||||
	s[7] = byte(h[2] >> 5)
 | 
			
		||||
	s[8] = byte(h[2] >> 13)
 | 
			
		||||
	s[9] = byte((h[2] >> 21) | (h[3] << 5))
 | 
			
		||||
	s[10] = byte(h[3] >> 3)
 | 
			
		||||
	s[11] = byte(h[3] >> 11)
 | 
			
		||||
	s[12] = byte((h[3] >> 19) | (h[4] << 6))
 | 
			
		||||
	s[13] = byte(h[4] >> 2)
 | 
			
		||||
	s[14] = byte(h[4] >> 10)
 | 
			
		||||
	s[15] = byte(h[4] >> 18)
 | 
			
		||||
	s[16] = byte(h[5] >> 0)
 | 
			
		||||
	s[17] = byte(h[5] >> 8)
 | 
			
		||||
	s[18] = byte(h[5] >> 16)
 | 
			
		||||
	s[19] = byte((h[5] >> 24) | (h[6] << 1))
 | 
			
		||||
	s[20] = byte(h[6] >> 7)
 | 
			
		||||
	s[21] = byte(h[6] >> 15)
 | 
			
		||||
	s[22] = byte((h[6] >> 23) | (h[7] << 3))
 | 
			
		||||
	s[23] = byte(h[7] >> 5)
 | 
			
		||||
	s[24] = byte(h[7] >> 13)
 | 
			
		||||
	s[25] = byte((h[7] >> 21) | (h[8] << 4))
 | 
			
		||||
	s[26] = byte(h[8] >> 4)
 | 
			
		||||
	s[27] = byte(h[8] >> 12)
 | 
			
		||||
	s[28] = byte((h[8] >> 20) | (h[9] << 6))
 | 
			
		||||
	s[29] = byte(h[9] >> 2)
 | 
			
		||||
	s[30] = byte(h[9] >> 10)
 | 
			
		||||
	s[31] = byte(h[9] >> 18)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feMul calculates h = f * g
 | 
			
		||||
// Can overlap h with f or g.
 | 
			
		||||
//
 | 
			
		||||
// Preconditions:
 | 
			
		||||
//    |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
 | 
			
		||||
//    |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
 | 
			
		||||
//
 | 
			
		||||
// Postconditions:
 | 
			
		||||
//    |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
 | 
			
		||||
//
 | 
			
		||||
// Notes on implementation strategy:
 | 
			
		||||
//
 | 
			
		||||
// Using schoolbook multiplication.
 | 
			
		||||
// Karatsuba would save a little in some cost models.
 | 
			
		||||
//
 | 
			
		||||
// Most multiplications by 2 and 19 are 32-bit precomputations;
 | 
			
		||||
// cheaper than 64-bit postcomputations.
 | 
			
		||||
//
 | 
			
		||||
// There is one remaining multiplication by 19 in the carry chain;
 | 
			
		||||
// one *19 precomputation can be merged into this,
 | 
			
		||||
// but the resulting data flow is considerably less clean.
 | 
			
		||||
//
 | 
			
		||||
// There are 12 carries below.
 | 
			
		||||
// 10 of them are 2-way parallelizable and vectorizable.
 | 
			
		||||
// Can get away with 11 carries, but then data flow is much deeper.
 | 
			
		||||
//
 | 
			
		||||
// With tighter constraints on inputs can squeeze carries into int32.
 | 
			
		||||
func feMul(h, f, g *fieldElement) {
 | 
			
		||||
	f0 := f[0]
 | 
			
		||||
	f1 := f[1]
 | 
			
		||||
	f2 := f[2]
 | 
			
		||||
	f3 := f[3]
 | 
			
		||||
	f4 := f[4]
 | 
			
		||||
	f5 := f[5]
 | 
			
		||||
	f6 := f[6]
 | 
			
		||||
	f7 := f[7]
 | 
			
		||||
	f8 := f[8]
 | 
			
		||||
	f9 := f[9]
 | 
			
		||||
	g0 := g[0]
 | 
			
		||||
	g1 := g[1]
 | 
			
		||||
	g2 := g[2]
 | 
			
		||||
	g3 := g[3]
 | 
			
		||||
	g4 := g[4]
 | 
			
		||||
	g5 := g[5]
 | 
			
		||||
	g6 := g[6]
 | 
			
		||||
	g7 := g[7]
 | 
			
		||||
	g8 := g[8]
 | 
			
		||||
	g9 := g[9]
 | 
			
		||||
	g1_19 := 19 * g1 // 1.4*2^29
 | 
			
		||||
	g2_19 := 19 * g2 // 1.4*2^30; still ok
 | 
			
		||||
	g3_19 := 19 * g3
 | 
			
		||||
	g4_19 := 19 * g4
 | 
			
		||||
	g5_19 := 19 * g5
 | 
			
		||||
	g6_19 := 19 * g6
 | 
			
		||||
	g7_19 := 19 * g7
 | 
			
		||||
	g8_19 := 19 * g8
 | 
			
		||||
	g9_19 := 19 * g9
 | 
			
		||||
	f1_2 := 2 * f1
 | 
			
		||||
	f3_2 := 2 * f3
 | 
			
		||||
	f5_2 := 2 * f5
 | 
			
		||||
	f7_2 := 2 * f7
 | 
			
		||||
	f9_2 := 2 * f9
 | 
			
		||||
	f0g0 := int64(f0) * int64(g0)
 | 
			
		||||
	f0g1 := int64(f0) * int64(g1)
 | 
			
		||||
	f0g2 := int64(f0) * int64(g2)
 | 
			
		||||
	f0g3 := int64(f0) * int64(g3)
 | 
			
		||||
	f0g4 := int64(f0) * int64(g4)
 | 
			
		||||
	f0g5 := int64(f0) * int64(g5)
 | 
			
		||||
	f0g6 := int64(f0) * int64(g6)
 | 
			
		||||
	f0g7 := int64(f0) * int64(g7)
 | 
			
		||||
	f0g8 := int64(f0) * int64(g8)
 | 
			
		||||
	f0g9 := int64(f0) * int64(g9)
 | 
			
		||||
	f1g0 := int64(f1) * int64(g0)
 | 
			
		||||
	f1g1_2 := int64(f1_2) * int64(g1)
 | 
			
		||||
	f1g2 := int64(f1) * int64(g2)
 | 
			
		||||
	f1g3_2 := int64(f1_2) * int64(g3)
 | 
			
		||||
	f1g4 := int64(f1) * int64(g4)
 | 
			
		||||
	f1g5_2 := int64(f1_2) * int64(g5)
 | 
			
		||||
	f1g6 := int64(f1) * int64(g6)
 | 
			
		||||
	f1g7_2 := int64(f1_2) * int64(g7)
 | 
			
		||||
	f1g8 := int64(f1) * int64(g8)
 | 
			
		||||
	f1g9_38 := int64(f1_2) * int64(g9_19)
 | 
			
		||||
	f2g0 := int64(f2) * int64(g0)
 | 
			
		||||
	f2g1 := int64(f2) * int64(g1)
 | 
			
		||||
	f2g2 := int64(f2) * int64(g2)
 | 
			
		||||
	f2g3 := int64(f2) * int64(g3)
 | 
			
		||||
	f2g4 := int64(f2) * int64(g4)
 | 
			
		||||
	f2g5 := int64(f2) * int64(g5)
 | 
			
		||||
	f2g6 := int64(f2) * int64(g6)
 | 
			
		||||
	f2g7 := int64(f2) * int64(g7)
 | 
			
		||||
	f2g8_19 := int64(f2) * int64(g8_19)
 | 
			
		||||
	f2g9_19 := int64(f2) * int64(g9_19)
 | 
			
		||||
	f3g0 := int64(f3) * int64(g0)
 | 
			
		||||
	f3g1_2 := int64(f3_2) * int64(g1)
 | 
			
		||||
	f3g2 := int64(f3) * int64(g2)
 | 
			
		||||
	f3g3_2 := int64(f3_2) * int64(g3)
 | 
			
		||||
	f3g4 := int64(f3) * int64(g4)
 | 
			
		||||
	f3g5_2 := int64(f3_2) * int64(g5)
 | 
			
		||||
	f3g6 := int64(f3) * int64(g6)
 | 
			
		||||
	f3g7_38 := int64(f3_2) * int64(g7_19)
 | 
			
		||||
	f3g8_19 := int64(f3) * int64(g8_19)
 | 
			
		||||
	f3g9_38 := int64(f3_2) * int64(g9_19)
 | 
			
		||||
	f4g0 := int64(f4) * int64(g0)
 | 
			
		||||
	f4g1 := int64(f4) * int64(g1)
 | 
			
		||||
	f4g2 := int64(f4) * int64(g2)
 | 
			
		||||
	f4g3 := int64(f4) * int64(g3)
 | 
			
		||||
	f4g4 := int64(f4) * int64(g4)
 | 
			
		||||
	f4g5 := int64(f4) * int64(g5)
 | 
			
		||||
	f4g6_19 := int64(f4) * int64(g6_19)
 | 
			
		||||
	f4g7_19 := int64(f4) * int64(g7_19)
 | 
			
		||||
	f4g8_19 := int64(f4) * int64(g8_19)
 | 
			
		||||
	f4g9_19 := int64(f4) * int64(g9_19)
 | 
			
		||||
	f5g0 := int64(f5) * int64(g0)
 | 
			
		||||
	f5g1_2 := int64(f5_2) * int64(g1)
 | 
			
		||||
	f5g2 := int64(f5) * int64(g2)
 | 
			
		||||
	f5g3_2 := int64(f5_2) * int64(g3)
 | 
			
		||||
	f5g4 := int64(f5) * int64(g4)
 | 
			
		||||
	f5g5_38 := int64(f5_2) * int64(g5_19)
 | 
			
		||||
	f5g6_19 := int64(f5) * int64(g6_19)
 | 
			
		||||
	f5g7_38 := int64(f5_2) * int64(g7_19)
 | 
			
		||||
	f5g8_19 := int64(f5) * int64(g8_19)
 | 
			
		||||
	f5g9_38 := int64(f5_2) * int64(g9_19)
 | 
			
		||||
	f6g0 := int64(f6) * int64(g0)
 | 
			
		||||
	f6g1 := int64(f6) * int64(g1)
 | 
			
		||||
	f6g2 := int64(f6) * int64(g2)
 | 
			
		||||
	f6g3 := int64(f6) * int64(g3)
 | 
			
		||||
	f6g4_19 := int64(f6) * int64(g4_19)
 | 
			
		||||
	f6g5_19 := int64(f6) * int64(g5_19)
 | 
			
		||||
	f6g6_19 := int64(f6) * int64(g6_19)
 | 
			
		||||
	f6g7_19 := int64(f6) * int64(g7_19)
 | 
			
		||||
	f6g8_19 := int64(f6) * int64(g8_19)
 | 
			
		||||
	f6g9_19 := int64(f6) * int64(g9_19)
 | 
			
		||||
	f7g0 := int64(f7) * int64(g0)
 | 
			
		||||
	f7g1_2 := int64(f7_2) * int64(g1)
 | 
			
		||||
	f7g2 := int64(f7) * int64(g2)
 | 
			
		||||
	f7g3_38 := int64(f7_2) * int64(g3_19)
 | 
			
		||||
	f7g4_19 := int64(f7) * int64(g4_19)
 | 
			
		||||
	f7g5_38 := int64(f7_2) * int64(g5_19)
 | 
			
		||||
	f7g6_19 := int64(f7) * int64(g6_19)
 | 
			
		||||
	f7g7_38 := int64(f7_2) * int64(g7_19)
 | 
			
		||||
	f7g8_19 := int64(f7) * int64(g8_19)
 | 
			
		||||
	f7g9_38 := int64(f7_2) * int64(g9_19)
 | 
			
		||||
	f8g0 := int64(f8) * int64(g0)
 | 
			
		||||
	f8g1 := int64(f8) * int64(g1)
 | 
			
		||||
	f8g2_19 := int64(f8) * int64(g2_19)
 | 
			
		||||
	f8g3_19 := int64(f8) * int64(g3_19)
 | 
			
		||||
	f8g4_19 := int64(f8) * int64(g4_19)
 | 
			
		||||
	f8g5_19 := int64(f8) * int64(g5_19)
 | 
			
		||||
	f8g6_19 := int64(f8) * int64(g6_19)
 | 
			
		||||
	f8g7_19 := int64(f8) * int64(g7_19)
 | 
			
		||||
	f8g8_19 := int64(f8) * int64(g8_19)
 | 
			
		||||
	f8g9_19 := int64(f8) * int64(g9_19)
 | 
			
		||||
	f9g0 := int64(f9) * int64(g0)
 | 
			
		||||
	f9g1_38 := int64(f9_2) * int64(g1_19)
 | 
			
		||||
	f9g2_19 := int64(f9) * int64(g2_19)
 | 
			
		||||
	f9g3_38 := int64(f9_2) * int64(g3_19)
 | 
			
		||||
	f9g4_19 := int64(f9) * int64(g4_19)
 | 
			
		||||
	f9g5_38 := int64(f9_2) * int64(g5_19)
 | 
			
		||||
	f9g6_19 := int64(f9) * int64(g6_19)
 | 
			
		||||
	f9g7_38 := int64(f9_2) * int64(g7_19)
 | 
			
		||||
	f9g8_19 := int64(f9) * int64(g8_19)
 | 
			
		||||
	f9g9_38 := int64(f9_2) * int64(g9_19)
 | 
			
		||||
	h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
 | 
			
		||||
	h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
 | 
			
		||||
	h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
 | 
			
		||||
	h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
 | 
			
		||||
	h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
 | 
			
		||||
	h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
 | 
			
		||||
	h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
 | 
			
		||||
	h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
 | 
			
		||||
	h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
 | 
			
		||||
	h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
 | 
			
		||||
	var carry [10]int64
 | 
			
		||||
 | 
			
		||||
	// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
 | 
			
		||||
	//   i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
 | 
			
		||||
	// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
 | 
			
		||||
	//   i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + (1 << 25)) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
	carry[4] = (h4 + (1 << 25)) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
	// |h0| <= 2^25
 | 
			
		||||
	// |h4| <= 2^25
 | 
			
		||||
	// |h1| <= 1.51*2^58
 | 
			
		||||
	// |h5| <= 1.51*2^58
 | 
			
		||||
 | 
			
		||||
	carry[1] = (h1 + (1 << 24)) >> 25
 | 
			
		||||
	h2 += carry[1]
 | 
			
		||||
	h1 -= carry[1] << 25
 | 
			
		||||
	carry[5] = (h5 + (1 << 24)) >> 25
 | 
			
		||||
	h6 += carry[5]
 | 
			
		||||
	h5 -= carry[5] << 25
 | 
			
		||||
	// |h1| <= 2^24; from now on fits into int32
 | 
			
		||||
	// |h5| <= 2^24; from now on fits into int32
 | 
			
		||||
	// |h2| <= 1.21*2^59
 | 
			
		||||
	// |h6| <= 1.21*2^59
 | 
			
		||||
 | 
			
		||||
	carry[2] = (h2 + (1 << 25)) >> 26
 | 
			
		||||
	h3 += carry[2]
 | 
			
		||||
	h2 -= carry[2] << 26
 | 
			
		||||
	carry[6] = (h6 + (1 << 25)) >> 26
 | 
			
		||||
	h7 += carry[6]
 | 
			
		||||
	h6 -= carry[6] << 26
 | 
			
		||||
	// |h2| <= 2^25; from now on fits into int32 unchanged
 | 
			
		||||
	// |h6| <= 2^25; from now on fits into int32 unchanged
 | 
			
		||||
	// |h3| <= 1.51*2^58
 | 
			
		||||
	// |h7| <= 1.51*2^58
 | 
			
		||||
 | 
			
		||||
	carry[3] = (h3 + (1 << 24)) >> 25
 | 
			
		||||
	h4 += carry[3]
 | 
			
		||||
	h3 -= carry[3] << 25
 | 
			
		||||
	carry[7] = (h7 + (1 << 24)) >> 25
 | 
			
		||||
	h8 += carry[7]
 | 
			
		||||
	h7 -= carry[7] << 25
 | 
			
		||||
	// |h3| <= 2^24; from now on fits into int32 unchanged
 | 
			
		||||
	// |h7| <= 2^24; from now on fits into int32 unchanged
 | 
			
		||||
	// |h4| <= 1.52*2^33
 | 
			
		||||
	// |h8| <= 1.52*2^33
 | 
			
		||||
 | 
			
		||||
	carry[4] = (h4 + (1 << 25)) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
	carry[8] = (h8 + (1 << 25)) >> 26
 | 
			
		||||
	h9 += carry[8]
 | 
			
		||||
	h8 -= carry[8] << 26
 | 
			
		||||
	// |h4| <= 2^25; from now on fits into int32 unchanged
 | 
			
		||||
	// |h8| <= 2^25; from now on fits into int32 unchanged
 | 
			
		||||
	// |h5| <= 1.01*2^24
 | 
			
		||||
	// |h9| <= 1.51*2^58
 | 
			
		||||
 | 
			
		||||
	carry[9] = (h9 + (1 << 24)) >> 25
 | 
			
		||||
	h0 += carry[9] * 19
 | 
			
		||||
	h9 -= carry[9] << 25
 | 
			
		||||
	// |h9| <= 2^24; from now on fits into int32 unchanged
 | 
			
		||||
	// |h0| <= 1.8*2^37
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + (1 << 25)) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
	// |h0| <= 2^25; from now on fits into int32 unchanged
 | 
			
		||||
	// |h1| <= 1.01*2^24
 | 
			
		||||
 | 
			
		||||
	h[0] = int32(h0)
 | 
			
		||||
	h[1] = int32(h1)
 | 
			
		||||
	h[2] = int32(h2)
 | 
			
		||||
	h[3] = int32(h3)
 | 
			
		||||
	h[4] = int32(h4)
 | 
			
		||||
	h[5] = int32(h5)
 | 
			
		||||
	h[6] = int32(h6)
 | 
			
		||||
	h[7] = int32(h7)
 | 
			
		||||
	h[8] = int32(h8)
 | 
			
		||||
	h[9] = int32(h9)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feSquare calculates h = f*f. Can overlap h with f.
 | 
			
		||||
//
 | 
			
		||||
// Preconditions:
 | 
			
		||||
//    |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
 | 
			
		||||
//
 | 
			
		||||
// Postconditions:
 | 
			
		||||
//    |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
 | 
			
		||||
func feSquare(h, f *fieldElement) {
 | 
			
		||||
	f0 := f[0]
 | 
			
		||||
	f1 := f[1]
 | 
			
		||||
	f2 := f[2]
 | 
			
		||||
	f3 := f[3]
 | 
			
		||||
	f4 := f[4]
 | 
			
		||||
	f5 := f[5]
 | 
			
		||||
	f6 := f[6]
 | 
			
		||||
	f7 := f[7]
 | 
			
		||||
	f8 := f[8]
 | 
			
		||||
	f9 := f[9]
 | 
			
		||||
	f0_2 := 2 * f0
 | 
			
		||||
	f1_2 := 2 * f1
 | 
			
		||||
	f2_2 := 2 * f2
 | 
			
		||||
	f3_2 := 2 * f3
 | 
			
		||||
	f4_2 := 2 * f4
 | 
			
		||||
	f5_2 := 2 * f5
 | 
			
		||||
	f6_2 := 2 * f6
 | 
			
		||||
	f7_2 := 2 * f7
 | 
			
		||||
	f5_38 := 38 * f5 // 1.31*2^30
 | 
			
		||||
	f6_19 := 19 * f6 // 1.31*2^30
 | 
			
		||||
	f7_38 := 38 * f7 // 1.31*2^30
 | 
			
		||||
	f8_19 := 19 * f8 // 1.31*2^30
 | 
			
		||||
	f9_38 := 38 * f9 // 1.31*2^30
 | 
			
		||||
	f0f0 := int64(f0) * int64(f0)
 | 
			
		||||
	f0f1_2 := int64(f0_2) * int64(f1)
 | 
			
		||||
	f0f2_2 := int64(f0_2) * int64(f2)
 | 
			
		||||
	f0f3_2 := int64(f0_2) * int64(f3)
 | 
			
		||||
	f0f4_2 := int64(f0_2) * int64(f4)
 | 
			
		||||
	f0f5_2 := int64(f0_2) * int64(f5)
 | 
			
		||||
	f0f6_2 := int64(f0_2) * int64(f6)
 | 
			
		||||
	f0f7_2 := int64(f0_2) * int64(f7)
 | 
			
		||||
	f0f8_2 := int64(f0_2) * int64(f8)
 | 
			
		||||
	f0f9_2 := int64(f0_2) * int64(f9)
 | 
			
		||||
	f1f1_2 := int64(f1_2) * int64(f1)
 | 
			
		||||
	f1f2_2 := int64(f1_2) * int64(f2)
 | 
			
		||||
	f1f3_4 := int64(f1_2) * int64(f3_2)
 | 
			
		||||
	f1f4_2 := int64(f1_2) * int64(f4)
 | 
			
		||||
	f1f5_4 := int64(f1_2) * int64(f5_2)
 | 
			
		||||
	f1f6_2 := int64(f1_2) * int64(f6)
 | 
			
		||||
	f1f7_4 := int64(f1_2) * int64(f7_2)
 | 
			
		||||
	f1f8_2 := int64(f1_2) * int64(f8)
 | 
			
		||||
	f1f9_76 := int64(f1_2) * int64(f9_38)
 | 
			
		||||
	f2f2 := int64(f2) * int64(f2)
 | 
			
		||||
	f2f3_2 := int64(f2_2) * int64(f3)
 | 
			
		||||
	f2f4_2 := int64(f2_2) * int64(f4)
 | 
			
		||||
	f2f5_2 := int64(f2_2) * int64(f5)
 | 
			
		||||
	f2f6_2 := int64(f2_2) * int64(f6)
 | 
			
		||||
	f2f7_2 := int64(f2_2) * int64(f7)
 | 
			
		||||
	f2f8_38 := int64(f2_2) * int64(f8_19)
 | 
			
		||||
	f2f9_38 := int64(f2) * int64(f9_38)
 | 
			
		||||
	f3f3_2 := int64(f3_2) * int64(f3)
 | 
			
		||||
	f3f4_2 := int64(f3_2) * int64(f4)
 | 
			
		||||
	f3f5_4 := int64(f3_2) * int64(f5_2)
 | 
			
		||||
	f3f6_2 := int64(f3_2) * int64(f6)
 | 
			
		||||
	f3f7_76 := int64(f3_2) * int64(f7_38)
 | 
			
		||||
	f3f8_38 := int64(f3_2) * int64(f8_19)
 | 
			
		||||
	f3f9_76 := int64(f3_2) * int64(f9_38)
 | 
			
		||||
	f4f4 := int64(f4) * int64(f4)
 | 
			
		||||
	f4f5_2 := int64(f4_2) * int64(f5)
 | 
			
		||||
	f4f6_38 := int64(f4_2) * int64(f6_19)
 | 
			
		||||
	f4f7_38 := int64(f4) * int64(f7_38)
 | 
			
		||||
	f4f8_38 := int64(f4_2) * int64(f8_19)
 | 
			
		||||
	f4f9_38 := int64(f4) * int64(f9_38)
 | 
			
		||||
	f5f5_38 := int64(f5) * int64(f5_38)
 | 
			
		||||
	f5f6_38 := int64(f5_2) * int64(f6_19)
 | 
			
		||||
	f5f7_76 := int64(f5_2) * int64(f7_38)
 | 
			
		||||
	f5f8_38 := int64(f5_2) * int64(f8_19)
 | 
			
		||||
	f5f9_76 := int64(f5_2) * int64(f9_38)
 | 
			
		||||
	f6f6_19 := int64(f6) * int64(f6_19)
 | 
			
		||||
	f6f7_38 := int64(f6) * int64(f7_38)
 | 
			
		||||
	f6f8_38 := int64(f6_2) * int64(f8_19)
 | 
			
		||||
	f6f9_38 := int64(f6) * int64(f9_38)
 | 
			
		||||
	f7f7_38 := int64(f7) * int64(f7_38)
 | 
			
		||||
	f7f8_38 := int64(f7_2) * int64(f8_19)
 | 
			
		||||
	f7f9_76 := int64(f7_2) * int64(f9_38)
 | 
			
		||||
	f8f8_19 := int64(f8) * int64(f8_19)
 | 
			
		||||
	f8f9_38 := int64(f8) * int64(f9_38)
 | 
			
		||||
	f9f9_38 := int64(f9) * int64(f9_38)
 | 
			
		||||
	h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
 | 
			
		||||
	h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
 | 
			
		||||
	h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
 | 
			
		||||
	h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
 | 
			
		||||
	h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
 | 
			
		||||
	h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
 | 
			
		||||
	h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
 | 
			
		||||
	h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
 | 
			
		||||
	h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
 | 
			
		||||
	h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
 | 
			
		||||
	var carry [10]int64
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + (1 << 25)) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
	carry[4] = (h4 + (1 << 25)) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
 | 
			
		||||
	carry[1] = (h1 + (1 << 24)) >> 25
 | 
			
		||||
	h2 += carry[1]
 | 
			
		||||
	h1 -= carry[1] << 25
 | 
			
		||||
	carry[5] = (h5 + (1 << 24)) >> 25
 | 
			
		||||
	h6 += carry[5]
 | 
			
		||||
	h5 -= carry[5] << 25
 | 
			
		||||
 | 
			
		||||
	carry[2] = (h2 + (1 << 25)) >> 26
 | 
			
		||||
	h3 += carry[2]
 | 
			
		||||
	h2 -= carry[2] << 26
 | 
			
		||||
	carry[6] = (h6 + (1 << 25)) >> 26
 | 
			
		||||
	h7 += carry[6]
 | 
			
		||||
	h6 -= carry[6] << 26
 | 
			
		||||
 | 
			
		||||
	carry[3] = (h3 + (1 << 24)) >> 25
 | 
			
		||||
	h4 += carry[3]
 | 
			
		||||
	h3 -= carry[3] << 25
 | 
			
		||||
	carry[7] = (h7 + (1 << 24)) >> 25
 | 
			
		||||
	h8 += carry[7]
 | 
			
		||||
	h7 -= carry[7] << 25
 | 
			
		||||
 | 
			
		||||
	carry[4] = (h4 + (1 << 25)) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
	carry[8] = (h8 + (1 << 25)) >> 26
 | 
			
		||||
	h9 += carry[8]
 | 
			
		||||
	h8 -= carry[8] << 26
 | 
			
		||||
 | 
			
		||||
	carry[9] = (h9 + (1 << 24)) >> 25
 | 
			
		||||
	h0 += carry[9] * 19
 | 
			
		||||
	h9 -= carry[9] << 25
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + (1 << 25)) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
 | 
			
		||||
	h[0] = int32(h0)
 | 
			
		||||
	h[1] = int32(h1)
 | 
			
		||||
	h[2] = int32(h2)
 | 
			
		||||
	h[3] = int32(h3)
 | 
			
		||||
	h[4] = int32(h4)
 | 
			
		||||
	h[5] = int32(h5)
 | 
			
		||||
	h[6] = int32(h6)
 | 
			
		||||
	h[7] = int32(h7)
 | 
			
		||||
	h[8] = int32(h8)
 | 
			
		||||
	h[9] = int32(h9)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feMul121666 calculates h = f * 121666. Can overlap h with f.
 | 
			
		||||
//
 | 
			
		||||
// Preconditions:
 | 
			
		||||
//    |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
 | 
			
		||||
//
 | 
			
		||||
// Postconditions:
 | 
			
		||||
//    |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
 | 
			
		||||
func feMul121666(h, f *fieldElement) {
 | 
			
		||||
	h0 := int64(f[0]) * 121666
 | 
			
		||||
	h1 := int64(f[1]) * 121666
 | 
			
		||||
	h2 := int64(f[2]) * 121666
 | 
			
		||||
	h3 := int64(f[3]) * 121666
 | 
			
		||||
	h4 := int64(f[4]) * 121666
 | 
			
		||||
	h5 := int64(f[5]) * 121666
 | 
			
		||||
	h6 := int64(f[6]) * 121666
 | 
			
		||||
	h7 := int64(f[7]) * 121666
 | 
			
		||||
	h8 := int64(f[8]) * 121666
 | 
			
		||||
	h9 := int64(f[9]) * 121666
 | 
			
		||||
	var carry [10]int64
 | 
			
		||||
 | 
			
		||||
	carry[9] = (h9 + (1 << 24)) >> 25
 | 
			
		||||
	h0 += carry[9] * 19
 | 
			
		||||
	h9 -= carry[9] << 25
 | 
			
		||||
	carry[1] = (h1 + (1 << 24)) >> 25
 | 
			
		||||
	h2 += carry[1]
 | 
			
		||||
	h1 -= carry[1] << 25
 | 
			
		||||
	carry[3] = (h3 + (1 << 24)) >> 25
 | 
			
		||||
	h4 += carry[3]
 | 
			
		||||
	h3 -= carry[3] << 25
 | 
			
		||||
	carry[5] = (h5 + (1 << 24)) >> 25
 | 
			
		||||
	h6 += carry[5]
 | 
			
		||||
	h5 -= carry[5] << 25
 | 
			
		||||
	carry[7] = (h7 + (1 << 24)) >> 25
 | 
			
		||||
	h8 += carry[7]
 | 
			
		||||
	h7 -= carry[7] << 25
 | 
			
		||||
 | 
			
		||||
	carry[0] = (h0 + (1 << 25)) >> 26
 | 
			
		||||
	h1 += carry[0]
 | 
			
		||||
	h0 -= carry[0] << 26
 | 
			
		||||
	carry[2] = (h2 + (1 << 25)) >> 26
 | 
			
		||||
	h3 += carry[2]
 | 
			
		||||
	h2 -= carry[2] << 26
 | 
			
		||||
	carry[4] = (h4 + (1 << 25)) >> 26
 | 
			
		||||
	h5 += carry[4]
 | 
			
		||||
	h4 -= carry[4] << 26
 | 
			
		||||
	carry[6] = (h6 + (1 << 25)) >> 26
 | 
			
		||||
	h7 += carry[6]
 | 
			
		||||
	h6 -= carry[6] << 26
 | 
			
		||||
	carry[8] = (h8 + (1 << 25)) >> 26
 | 
			
		||||
	h9 += carry[8]
 | 
			
		||||
	h8 -= carry[8] << 26
 | 
			
		||||
 | 
			
		||||
	h[0] = int32(h0)
 | 
			
		||||
	h[1] = int32(h1)
 | 
			
		||||
	h[2] = int32(h2)
 | 
			
		||||
	h[3] = int32(h3)
 | 
			
		||||
	h[4] = int32(h4)
 | 
			
		||||
	h[5] = int32(h5)
 | 
			
		||||
	h[6] = int32(h6)
 | 
			
		||||
	h[7] = int32(h7)
 | 
			
		||||
	h[8] = int32(h8)
 | 
			
		||||
	h[9] = int32(h9)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// feInvert sets out = z^-1.
 | 
			
		||||
func feInvert(out, z *fieldElement) {
 | 
			
		||||
	var t0, t1, t2, t3 fieldElement
 | 
			
		||||
	var i int
 | 
			
		||||
 | 
			
		||||
	feSquare(&t0, z)
 | 
			
		||||
	for i = 1; i < 1; i++ {
 | 
			
		||||
		feSquare(&t0, &t0)
 | 
			
		||||
	}
 | 
			
		||||
	feSquare(&t1, &t0)
 | 
			
		||||
	for i = 1; i < 2; i++ {
 | 
			
		||||
		feSquare(&t1, &t1)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t1, z, &t1)
 | 
			
		||||
	feMul(&t0, &t0, &t1)
 | 
			
		||||
	feSquare(&t2, &t0)
 | 
			
		||||
	for i = 1; i < 1; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t1, &t1, &t2)
 | 
			
		||||
	feSquare(&t2, &t1)
 | 
			
		||||
	for i = 1; i < 5; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t1, &t2, &t1)
 | 
			
		||||
	feSquare(&t2, &t1)
 | 
			
		||||
	for i = 1; i < 10; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t2, &t2, &t1)
 | 
			
		||||
	feSquare(&t3, &t2)
 | 
			
		||||
	for i = 1; i < 20; i++ {
 | 
			
		||||
		feSquare(&t3, &t3)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t2, &t3, &t2)
 | 
			
		||||
	feSquare(&t2, &t2)
 | 
			
		||||
	for i = 1; i < 10; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t1, &t2, &t1)
 | 
			
		||||
	feSquare(&t2, &t1)
 | 
			
		||||
	for i = 1; i < 50; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t2, &t2, &t1)
 | 
			
		||||
	feSquare(&t3, &t2)
 | 
			
		||||
	for i = 1; i < 100; i++ {
 | 
			
		||||
		feSquare(&t3, &t3)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t2, &t3, &t2)
 | 
			
		||||
	feSquare(&t2, &t2)
 | 
			
		||||
	for i = 1; i < 50; i++ {
 | 
			
		||||
		feSquare(&t2, &t2)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(&t1, &t2, &t1)
 | 
			
		||||
	feSquare(&t1, &t1)
 | 
			
		||||
	for i = 1; i < 5; i++ {
 | 
			
		||||
		feSquare(&t1, &t1)
 | 
			
		||||
	}
 | 
			
		||||
	feMul(out, &t1, &t0)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func scalarMultGeneric(out, in, base *[32]byte) {
 | 
			
		||||
	var e [32]byte
 | 
			
		||||
 | 
			
		||||
	copy(e[:], in[:])
 | 
			
		||||
	e[0] &= 248
 | 
			
		||||
	e[31] &= 127
 | 
			
		||||
	e[31] |= 64
 | 
			
		||||
 | 
			
		||||
	var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
 | 
			
		||||
	feFromBytes(&x1, base)
 | 
			
		||||
	feOne(&x2)
 | 
			
		||||
	feCopy(&x3, &x1)
 | 
			
		||||
	feOne(&z3)
 | 
			
		||||
 | 
			
		||||
	swap := int32(0)
 | 
			
		||||
	for pos := 254; pos >= 0; pos-- {
 | 
			
		||||
		b := e[pos/8] >> uint(pos&7)
 | 
			
		||||
		b &= 1
 | 
			
		||||
		swap ^= int32(b)
 | 
			
		||||
		feCSwap(&x2, &x3, swap)
 | 
			
		||||
		feCSwap(&z2, &z3, swap)
 | 
			
		||||
		swap = int32(b)
 | 
			
		||||
 | 
			
		||||
		feSub(&tmp0, &x3, &z3)
 | 
			
		||||
		feSub(&tmp1, &x2, &z2)
 | 
			
		||||
		feAdd(&x2, &x2, &z2)
 | 
			
		||||
		feAdd(&z2, &x3, &z3)
 | 
			
		||||
		feMul(&z3, &tmp0, &x2)
 | 
			
		||||
		feMul(&z2, &z2, &tmp1)
 | 
			
		||||
		feSquare(&tmp0, &tmp1)
 | 
			
		||||
		feSquare(&tmp1, &x2)
 | 
			
		||||
		feAdd(&x3, &z3, &z2)
 | 
			
		||||
		feSub(&z2, &z3, &z2)
 | 
			
		||||
		feMul(&x2, &tmp1, &tmp0)
 | 
			
		||||
		feSub(&tmp1, &tmp1, &tmp0)
 | 
			
		||||
		feSquare(&z2, &z2)
 | 
			
		||||
		feMul121666(&z3, &tmp1)
 | 
			
		||||
		feSquare(&x3, &x3)
 | 
			
		||||
		feAdd(&tmp0, &tmp0, &z3)
 | 
			
		||||
		feMul(&z3, &x1, &z2)
 | 
			
		||||
		feMul(&z2, &tmp1, &tmp0)
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	feCSwap(&x2, &x3, swap)
 | 
			
		||||
	feCSwap(&z2, &z3, swap)
 | 
			
		||||
 | 
			
		||||
	feInvert(&z2, &z2)
 | 
			
		||||
	feMul(&x2, &x2, &z2)
 | 
			
		||||
	feToBytes(out, &x2)
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/curve25519_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
								
							@@ -1,12 +0,0 @@
 | 
			
		||||
// Copyright 2019 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build !amd64 || !gc || purego
 | 
			
		||||
// +build !amd64 !gc purego
 | 
			
		||||
 | 
			
		||||
package curve25519
 | 
			
		||||
 | 
			
		||||
func scalarMult(out, in, base *[32]byte) {
 | 
			
		||||
	scalarMultGeneric(out, in, base)
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										7
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/README
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/README
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,7 @@
 | 
			
		||||
This package is kept in sync with crypto/ed25519/internal/edwards25519/field in
 | 
			
		||||
the standard library.
 | 
			
		||||
 | 
			
		||||
If there are any changes in the standard library that need to be synced to this
 | 
			
		||||
package, run sync.sh. It will not overwrite any local changes made since the
 | 
			
		||||
previous sync, so it's ok to land changes in this package first, and then sync
 | 
			
		||||
to the standard library later.
 | 
			
		||||
							
								
								
									
										416
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										416
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,416 @@
 | 
			
		||||
// Copyright (c) 2017 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
// Package field implements fast arithmetic modulo 2^255-19.
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
import (
 | 
			
		||||
	"crypto/subtle"
 | 
			
		||||
	"encoding/binary"
 | 
			
		||||
	"math/bits"
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
// Element represents an element of the field GF(2^255-19). Note that this
 | 
			
		||||
// is not a cryptographically secure group, and should only be used to interact
 | 
			
		||||
// with edwards25519.Point coordinates.
 | 
			
		||||
//
 | 
			
		||||
// This type works similarly to math/big.Int, and all arguments and receivers
 | 
			
		||||
// are allowed to alias.
 | 
			
		||||
//
 | 
			
		||||
// The zero value is a valid zero element.
 | 
			
		||||
type Element struct {
 | 
			
		||||
	// An element t represents the integer
 | 
			
		||||
	//     t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
 | 
			
		||||
	//
 | 
			
		||||
	// Between operations, all limbs are expected to be lower than 2^52.
 | 
			
		||||
	l0 uint64
 | 
			
		||||
	l1 uint64
 | 
			
		||||
	l2 uint64
 | 
			
		||||
	l3 uint64
 | 
			
		||||
	l4 uint64
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
const maskLow51Bits uint64 = (1 << 51) - 1
 | 
			
		||||
 | 
			
		||||
var feZero = &Element{0, 0, 0, 0, 0}
 | 
			
		||||
 | 
			
		||||
// Zero sets v = 0, and returns v.
 | 
			
		||||
func (v *Element) Zero() *Element {
 | 
			
		||||
	*v = *feZero
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
var feOne = &Element{1, 0, 0, 0, 0}
 | 
			
		||||
 | 
			
		||||
// One sets v = 1, and returns v.
 | 
			
		||||
func (v *Element) One() *Element {
 | 
			
		||||
	*v = *feOne
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// reduce reduces v modulo 2^255 - 19 and returns it.
 | 
			
		||||
func (v *Element) reduce() *Element {
 | 
			
		||||
	v.carryPropagate()
 | 
			
		||||
 | 
			
		||||
	// After the light reduction we now have a field element representation
 | 
			
		||||
	// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
 | 
			
		||||
 | 
			
		||||
	// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
 | 
			
		||||
	// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
 | 
			
		||||
	c := (v.l0 + 19) >> 51
 | 
			
		||||
	c = (v.l1 + c) >> 51
 | 
			
		||||
	c = (v.l2 + c) >> 51
 | 
			
		||||
	c = (v.l3 + c) >> 51
 | 
			
		||||
	c = (v.l4 + c) >> 51
 | 
			
		||||
 | 
			
		||||
	// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
 | 
			
		||||
	// effectively applying the reduction identity to the carry.
 | 
			
		||||
	v.l0 += 19 * c
 | 
			
		||||
 | 
			
		||||
	v.l1 += v.l0 >> 51
 | 
			
		||||
	v.l0 = v.l0 & maskLow51Bits
 | 
			
		||||
	v.l2 += v.l1 >> 51
 | 
			
		||||
	v.l1 = v.l1 & maskLow51Bits
 | 
			
		||||
	v.l3 += v.l2 >> 51
 | 
			
		||||
	v.l2 = v.l2 & maskLow51Bits
 | 
			
		||||
	v.l4 += v.l3 >> 51
 | 
			
		||||
	v.l3 = v.l3 & maskLow51Bits
 | 
			
		||||
	// no additional carry
 | 
			
		||||
	v.l4 = v.l4 & maskLow51Bits
 | 
			
		||||
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Add sets v = a + b, and returns v.
 | 
			
		||||
func (v *Element) Add(a, b *Element) *Element {
 | 
			
		||||
	v.l0 = a.l0 + b.l0
 | 
			
		||||
	v.l1 = a.l1 + b.l1
 | 
			
		||||
	v.l2 = a.l2 + b.l2
 | 
			
		||||
	v.l3 = a.l3 + b.l3
 | 
			
		||||
	v.l4 = a.l4 + b.l4
 | 
			
		||||
	// Using the generic implementation here is actually faster than the
 | 
			
		||||
	// assembly. Probably because the body of this function is so simple that
 | 
			
		||||
	// the compiler can figure out better optimizations by inlining the carry
 | 
			
		||||
	// propagation. TODO
 | 
			
		||||
	return v.carryPropagateGeneric()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Subtract sets v = a - b, and returns v.
 | 
			
		||||
func (v *Element) Subtract(a, b *Element) *Element {
 | 
			
		||||
	// We first add 2 * p, to guarantee the subtraction won't underflow, and
 | 
			
		||||
	// then subtract b (which can be up to 2^255 + 2^13 * 19).
 | 
			
		||||
	v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
 | 
			
		||||
	v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
 | 
			
		||||
	v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
 | 
			
		||||
	v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
 | 
			
		||||
	v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
 | 
			
		||||
	return v.carryPropagate()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Negate sets v = -a, and returns v.
 | 
			
		||||
func (v *Element) Negate(a *Element) *Element {
 | 
			
		||||
	return v.Subtract(feZero, a)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Invert sets v = 1/z mod p, and returns v.
 | 
			
		||||
//
 | 
			
		||||
// If z == 0, Invert returns v = 0.
 | 
			
		||||
func (v *Element) Invert(z *Element) *Element {
 | 
			
		||||
	// Inversion is implemented as exponentiation with exponent p − 2. It uses the
 | 
			
		||||
	// same sequence of 255 squarings and 11 multiplications as [Curve25519].
 | 
			
		||||
	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
 | 
			
		||||
 | 
			
		||||
	z2.Square(z)             // 2
 | 
			
		||||
	t.Square(&z2)            // 4
 | 
			
		||||
	t.Square(&t)             // 8
 | 
			
		||||
	z9.Multiply(&t, z)       // 9
 | 
			
		||||
	z11.Multiply(&z9, &z2)   // 11
 | 
			
		||||
	t.Square(&z11)           // 22
 | 
			
		||||
	z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&z2_5_0) // 2^6 - 2^1
 | 
			
		||||
	for i := 0; i < 4; i++ {
 | 
			
		||||
		t.Square(&t) // 2^10 - 2^5
 | 
			
		||||
	}
 | 
			
		||||
	z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&z2_10_0) // 2^11 - 2^1
 | 
			
		||||
	for i := 0; i < 9; i++ {
 | 
			
		||||
		t.Square(&t) // 2^20 - 2^10
 | 
			
		||||
	}
 | 
			
		||||
	z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&z2_20_0) // 2^21 - 2^1
 | 
			
		||||
	for i := 0; i < 19; i++ {
 | 
			
		||||
		t.Square(&t) // 2^40 - 2^20
 | 
			
		||||
	}
 | 
			
		||||
	t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&t) // 2^41 - 2^1
 | 
			
		||||
	for i := 0; i < 9; i++ {
 | 
			
		||||
		t.Square(&t) // 2^50 - 2^10
 | 
			
		||||
	}
 | 
			
		||||
	z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&z2_50_0) // 2^51 - 2^1
 | 
			
		||||
	for i := 0; i < 49; i++ {
 | 
			
		||||
		t.Square(&t) // 2^100 - 2^50
 | 
			
		||||
	}
 | 
			
		||||
	z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&z2_100_0) // 2^101 - 2^1
 | 
			
		||||
	for i := 0; i < 99; i++ {
 | 
			
		||||
		t.Square(&t) // 2^200 - 2^100
 | 
			
		||||
	}
 | 
			
		||||
	t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&t) // 2^201 - 2^1
 | 
			
		||||
	for i := 0; i < 49; i++ {
 | 
			
		||||
		t.Square(&t) // 2^250 - 2^50
 | 
			
		||||
	}
 | 
			
		||||
	t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
 | 
			
		||||
 | 
			
		||||
	t.Square(&t) // 2^251 - 2^1
 | 
			
		||||
	t.Square(&t) // 2^252 - 2^2
 | 
			
		||||
	t.Square(&t) // 2^253 - 2^3
 | 
			
		||||
	t.Square(&t) // 2^254 - 2^4
 | 
			
		||||
	t.Square(&t) // 2^255 - 2^5
 | 
			
		||||
 | 
			
		||||
	return v.Multiply(&t, &z11) // 2^255 - 21
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Set sets v = a, and returns v.
 | 
			
		||||
func (v *Element) Set(a *Element) *Element {
 | 
			
		||||
	*v = *a
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
 | 
			
		||||
//
 | 
			
		||||
// Consistent with RFC 7748, the most significant bit (the high bit of the
 | 
			
		||||
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
 | 
			
		||||
// are accepted. Note that this is laxer than specified by RFC 8032.
 | 
			
		||||
func (v *Element) SetBytes(x []byte) *Element {
 | 
			
		||||
	if len(x) != 32 {
 | 
			
		||||
		panic("edwards25519: invalid field element input size")
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
 | 
			
		||||
	v.l0 = binary.LittleEndian.Uint64(x[0:8])
 | 
			
		||||
	v.l0 &= maskLow51Bits
 | 
			
		||||
	// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
 | 
			
		||||
	v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
 | 
			
		||||
	v.l1 &= maskLow51Bits
 | 
			
		||||
	// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
 | 
			
		||||
	v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
 | 
			
		||||
	v.l2 &= maskLow51Bits
 | 
			
		||||
	// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
 | 
			
		||||
	v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
 | 
			
		||||
	v.l3 &= maskLow51Bits
 | 
			
		||||
	// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
 | 
			
		||||
	// Note: not bytes 25:33, shift 4, to avoid overread.
 | 
			
		||||
	v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
 | 
			
		||||
	v.l4 &= maskLow51Bits
 | 
			
		||||
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Bytes returns the canonical 32-byte little-endian encoding of v.
 | 
			
		||||
func (v *Element) Bytes() []byte {
 | 
			
		||||
	// This function is outlined to make the allocations inline in the caller
 | 
			
		||||
	// rather than happen on the heap.
 | 
			
		||||
	var out [32]byte
 | 
			
		||||
	return v.bytes(&out)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func (v *Element) bytes(out *[32]byte) []byte {
 | 
			
		||||
	t := *v
 | 
			
		||||
	t.reduce()
 | 
			
		||||
 | 
			
		||||
	var buf [8]byte
 | 
			
		||||
	for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
 | 
			
		||||
		bitsOffset := i * 51
 | 
			
		||||
		binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
 | 
			
		||||
		for i, bb := range buf {
 | 
			
		||||
			off := bitsOffset/8 + i
 | 
			
		||||
			if off >= len(out) {
 | 
			
		||||
				break
 | 
			
		||||
			}
 | 
			
		||||
			out[off] |= bb
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return out[:]
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Equal returns 1 if v and u are equal, and 0 otherwise.
 | 
			
		||||
func (v *Element) Equal(u *Element) int {
 | 
			
		||||
	sa, sv := u.Bytes(), v.Bytes()
 | 
			
		||||
	return subtle.ConstantTimeCompare(sa, sv)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
 | 
			
		||||
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
 | 
			
		||||
 | 
			
		||||
// Select sets v to a if cond == 1, and to b if cond == 0.
 | 
			
		||||
func (v *Element) Select(a, b *Element, cond int) *Element {
 | 
			
		||||
	m := mask64Bits(cond)
 | 
			
		||||
	v.l0 = (m & a.l0) | (^m & b.l0)
 | 
			
		||||
	v.l1 = (m & a.l1) | (^m & b.l1)
 | 
			
		||||
	v.l2 = (m & a.l2) | (^m & b.l2)
 | 
			
		||||
	v.l3 = (m & a.l3) | (^m & b.l3)
 | 
			
		||||
	v.l4 = (m & a.l4) | (^m & b.l4)
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
 | 
			
		||||
func (v *Element) Swap(u *Element, cond int) {
 | 
			
		||||
	m := mask64Bits(cond)
 | 
			
		||||
	t := m & (v.l0 ^ u.l0)
 | 
			
		||||
	v.l0 ^= t
 | 
			
		||||
	u.l0 ^= t
 | 
			
		||||
	t = m & (v.l1 ^ u.l1)
 | 
			
		||||
	v.l1 ^= t
 | 
			
		||||
	u.l1 ^= t
 | 
			
		||||
	t = m & (v.l2 ^ u.l2)
 | 
			
		||||
	v.l2 ^= t
 | 
			
		||||
	u.l2 ^= t
 | 
			
		||||
	t = m & (v.l3 ^ u.l3)
 | 
			
		||||
	v.l3 ^= t
 | 
			
		||||
	u.l3 ^= t
 | 
			
		||||
	t = m & (v.l4 ^ u.l4)
 | 
			
		||||
	v.l4 ^= t
 | 
			
		||||
	u.l4 ^= t
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// IsNegative returns 1 if v is negative, and 0 otherwise.
 | 
			
		||||
func (v *Element) IsNegative() int {
 | 
			
		||||
	return int(v.Bytes()[0] & 1)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Absolute sets v to |u|, and returns v.
 | 
			
		||||
func (v *Element) Absolute(u *Element) *Element {
 | 
			
		||||
	return v.Select(new(Element).Negate(u), u, u.IsNegative())
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Multiply sets v = x * y, and returns v.
 | 
			
		||||
func (v *Element) Multiply(x, y *Element) *Element {
 | 
			
		||||
	feMul(v, x, y)
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Square sets v = x * x, and returns v.
 | 
			
		||||
func (v *Element) Square(x *Element) *Element {
 | 
			
		||||
	feSquare(v, x)
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Mult32 sets v = x * y, and returns v.
 | 
			
		||||
func (v *Element) Mult32(x *Element, y uint32) *Element {
 | 
			
		||||
	x0lo, x0hi := mul51(x.l0, y)
 | 
			
		||||
	x1lo, x1hi := mul51(x.l1, y)
 | 
			
		||||
	x2lo, x2hi := mul51(x.l2, y)
 | 
			
		||||
	x3lo, x3hi := mul51(x.l3, y)
 | 
			
		||||
	x4lo, x4hi := mul51(x.l4, y)
 | 
			
		||||
	v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
 | 
			
		||||
	v.l1 = x1lo + x0hi
 | 
			
		||||
	v.l2 = x2lo + x1hi
 | 
			
		||||
	v.l3 = x3lo + x2hi
 | 
			
		||||
	v.l4 = x4lo + x3hi
 | 
			
		||||
	// The hi portions are going to be only 32 bits, plus any previous excess,
 | 
			
		||||
	// so we can skip the carry propagation.
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// mul51 returns lo + hi * 2⁵¹ = a * b.
 | 
			
		||||
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
 | 
			
		||||
	mh, ml := bits.Mul64(a, uint64(b))
 | 
			
		||||
	lo = ml & maskLow51Bits
 | 
			
		||||
	hi = (mh << 13) | (ml >> 51)
 | 
			
		||||
	return
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
 | 
			
		||||
func (v *Element) Pow22523(x *Element) *Element {
 | 
			
		||||
	var t0, t1, t2 Element
 | 
			
		||||
 | 
			
		||||
	t0.Square(x)             // x^2
 | 
			
		||||
	t1.Square(&t0)           // x^4
 | 
			
		||||
	t1.Square(&t1)           // x^8
 | 
			
		||||
	t1.Multiply(x, &t1)      // x^9
 | 
			
		||||
	t0.Multiply(&t0, &t1)    // x^11
 | 
			
		||||
	t0.Square(&t0)           // x^22
 | 
			
		||||
	t0.Multiply(&t1, &t0)    // x^31
 | 
			
		||||
	t1.Square(&t0)           // x^62
 | 
			
		||||
	for i := 1; i < 5; i++ { // x^992
 | 
			
		||||
		t1.Square(&t1)
 | 
			
		||||
	}
 | 
			
		||||
	t0.Multiply(&t1, &t0)     // x^1023 -> 1023 = 2^10 - 1
 | 
			
		||||
	t1.Square(&t0)            // 2^11 - 2
 | 
			
		||||
	for i := 1; i < 10; i++ { // 2^20 - 2^10
 | 
			
		||||
		t1.Square(&t1)
 | 
			
		||||
	}
 | 
			
		||||
	t1.Multiply(&t1, &t0)     // 2^20 - 1
 | 
			
		||||
	t2.Square(&t1)            // 2^21 - 2
 | 
			
		||||
	for i := 1; i < 20; i++ { // 2^40 - 2^20
 | 
			
		||||
		t2.Square(&t2)
 | 
			
		||||
	}
 | 
			
		||||
	t1.Multiply(&t2, &t1)     // 2^40 - 1
 | 
			
		||||
	t1.Square(&t1)            // 2^41 - 2
 | 
			
		||||
	for i := 1; i < 10; i++ { // 2^50 - 2^10
 | 
			
		||||
		t1.Square(&t1)
 | 
			
		||||
	}
 | 
			
		||||
	t0.Multiply(&t1, &t0)     // 2^50 - 1
 | 
			
		||||
	t1.Square(&t0)            // 2^51 - 2
 | 
			
		||||
	for i := 1; i < 50; i++ { // 2^100 - 2^50
 | 
			
		||||
		t1.Square(&t1)
 | 
			
		||||
	}
 | 
			
		||||
	t1.Multiply(&t1, &t0)      // 2^100 - 1
 | 
			
		||||
	t2.Square(&t1)             // 2^101 - 2
 | 
			
		||||
	for i := 1; i < 100; i++ { // 2^200 - 2^100
 | 
			
		||||
		t2.Square(&t2)
 | 
			
		||||
	}
 | 
			
		||||
	t1.Multiply(&t2, &t1)     // 2^200 - 1
 | 
			
		||||
	t1.Square(&t1)            // 2^201 - 2
 | 
			
		||||
	for i := 1; i < 50; i++ { // 2^250 - 2^50
 | 
			
		||||
		t1.Square(&t1)
 | 
			
		||||
	}
 | 
			
		||||
	t0.Multiply(&t1, &t0)     // 2^250 - 1
 | 
			
		||||
	t0.Square(&t0)            // 2^251 - 2
 | 
			
		||||
	t0.Square(&t0)            // 2^252 - 4
 | 
			
		||||
	return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
 | 
			
		||||
var sqrtM1 = &Element{1718705420411056, 234908883556509,
 | 
			
		||||
	2233514472574048, 2117202627021982, 765476049583133}
 | 
			
		||||
 | 
			
		||||
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
 | 
			
		||||
//
 | 
			
		||||
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
 | 
			
		||||
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
 | 
			
		||||
// and returns r and 0.
 | 
			
		||||
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
 | 
			
		||||
	var a, b Element
 | 
			
		||||
 | 
			
		||||
	// r = (u * v3) * (u * v7)^((p-5)/8)
 | 
			
		||||
	v2 := a.Square(v)
 | 
			
		||||
	uv3 := b.Multiply(u, b.Multiply(v2, v))
 | 
			
		||||
	uv7 := a.Multiply(uv3, a.Square(v2))
 | 
			
		||||
	r.Multiply(uv3, r.Pow22523(uv7))
 | 
			
		||||
 | 
			
		||||
	check := a.Multiply(v, a.Square(r)) // check = v * r^2
 | 
			
		||||
 | 
			
		||||
	uNeg := b.Negate(u)
 | 
			
		||||
	correctSignSqrt := check.Equal(u)
 | 
			
		||||
	flippedSignSqrt := check.Equal(uNeg)
 | 
			
		||||
	flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
 | 
			
		||||
 | 
			
		||||
	rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
 | 
			
		||||
	// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
 | 
			
		||||
	r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
 | 
			
		||||
 | 
			
		||||
	r.Absolute(r) // Choose the nonnegative square root.
 | 
			
		||||
	return r, correctSignSqrt | flippedSignSqrt
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										13
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,13 @@
 | 
			
		||||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
 | 
			
		||||
 | 
			
		||||
// +build amd64,gc,!purego
 | 
			
		||||
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
// feMul sets out = a * b. It works like feMulGeneric.
 | 
			
		||||
//go:noescape
 | 
			
		||||
func feMul(out *Element, a *Element, b *Element)
 | 
			
		||||
 | 
			
		||||
// feSquare sets out = a * a. It works like feSquareGeneric.
 | 
			
		||||
//go:noescape
 | 
			
		||||
func feSquare(out *Element, a *Element)
 | 
			
		||||
							
								
								
									
										379
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										379
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,379 @@
 | 
			
		||||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
 | 
			
		||||
 | 
			
		||||
//go:build amd64 && gc && !purego
 | 
			
		||||
// +build amd64,gc,!purego
 | 
			
		||||
 | 
			
		||||
#include "textflag.h"
 | 
			
		||||
 | 
			
		||||
// func feMul(out *Element, a *Element, b *Element)
 | 
			
		||||
TEXT ·feMul(SB), NOSPLIT, $0-24
 | 
			
		||||
	MOVQ a+8(FP), CX
 | 
			
		||||
	MOVQ b+16(FP), BX
 | 
			
		||||
 | 
			
		||||
	// r0 = a0×b0
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ (BX)
 | 
			
		||||
	MOVQ AX, DI
 | 
			
		||||
	MOVQ DX, SI
 | 
			
		||||
 | 
			
		||||
	// r0 += 19×a1×b4
 | 
			
		||||
	MOVQ   8(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   32(BX)
 | 
			
		||||
	ADDQ   AX, DI
 | 
			
		||||
	ADCQ   DX, SI
 | 
			
		||||
 | 
			
		||||
	// r0 += 19×a2×b3
 | 
			
		||||
	MOVQ   16(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   24(BX)
 | 
			
		||||
	ADDQ   AX, DI
 | 
			
		||||
	ADCQ   DX, SI
 | 
			
		||||
 | 
			
		||||
	// r0 += 19×a3×b2
 | 
			
		||||
	MOVQ   24(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   16(BX)
 | 
			
		||||
	ADDQ   AX, DI
 | 
			
		||||
	ADCQ   DX, SI
 | 
			
		||||
 | 
			
		||||
	// r0 += 19×a4×b1
 | 
			
		||||
	MOVQ   32(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   8(BX)
 | 
			
		||||
	ADDQ   AX, DI
 | 
			
		||||
	ADCQ   DX, SI
 | 
			
		||||
 | 
			
		||||
	// r1 = a0×b1
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ 8(BX)
 | 
			
		||||
	MOVQ AX, R9
 | 
			
		||||
	MOVQ DX, R8
 | 
			
		||||
 | 
			
		||||
	// r1 += a1×b0
 | 
			
		||||
	MOVQ 8(CX), AX
 | 
			
		||||
	MULQ (BX)
 | 
			
		||||
	ADDQ AX, R9
 | 
			
		||||
	ADCQ DX, R8
 | 
			
		||||
 | 
			
		||||
	// r1 += 19×a2×b4
 | 
			
		||||
	MOVQ   16(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   32(BX)
 | 
			
		||||
	ADDQ   AX, R9
 | 
			
		||||
	ADCQ   DX, R8
 | 
			
		||||
 | 
			
		||||
	// r1 += 19×a3×b3
 | 
			
		||||
	MOVQ   24(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   24(BX)
 | 
			
		||||
	ADDQ   AX, R9
 | 
			
		||||
	ADCQ   DX, R8
 | 
			
		||||
 | 
			
		||||
	// r1 += 19×a4×b2
 | 
			
		||||
	MOVQ   32(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   16(BX)
 | 
			
		||||
	ADDQ   AX, R9
 | 
			
		||||
	ADCQ   DX, R8
 | 
			
		||||
 | 
			
		||||
	// r2 = a0×b2
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ 16(BX)
 | 
			
		||||
	MOVQ AX, R11
 | 
			
		||||
	MOVQ DX, R10
 | 
			
		||||
 | 
			
		||||
	// r2 += a1×b1
 | 
			
		||||
	MOVQ 8(CX), AX
 | 
			
		||||
	MULQ 8(BX)
 | 
			
		||||
	ADDQ AX, R11
 | 
			
		||||
	ADCQ DX, R10
 | 
			
		||||
 | 
			
		||||
	// r2 += a2×b0
 | 
			
		||||
	MOVQ 16(CX), AX
 | 
			
		||||
	MULQ (BX)
 | 
			
		||||
	ADDQ AX, R11
 | 
			
		||||
	ADCQ DX, R10
 | 
			
		||||
 | 
			
		||||
	// r2 += 19×a3×b4
 | 
			
		||||
	MOVQ   24(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   32(BX)
 | 
			
		||||
	ADDQ   AX, R11
 | 
			
		||||
	ADCQ   DX, R10
 | 
			
		||||
 | 
			
		||||
	// r2 += 19×a4×b3
 | 
			
		||||
	MOVQ   32(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   24(BX)
 | 
			
		||||
	ADDQ   AX, R11
 | 
			
		||||
	ADCQ   DX, R10
 | 
			
		||||
 | 
			
		||||
	// r3 = a0×b3
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ 24(BX)
 | 
			
		||||
	MOVQ AX, R13
 | 
			
		||||
	MOVQ DX, R12
 | 
			
		||||
 | 
			
		||||
	// r3 += a1×b2
 | 
			
		||||
	MOVQ 8(CX), AX
 | 
			
		||||
	MULQ 16(BX)
 | 
			
		||||
	ADDQ AX, R13
 | 
			
		||||
	ADCQ DX, R12
 | 
			
		||||
 | 
			
		||||
	// r3 += a2×b1
 | 
			
		||||
	MOVQ 16(CX), AX
 | 
			
		||||
	MULQ 8(BX)
 | 
			
		||||
	ADDQ AX, R13
 | 
			
		||||
	ADCQ DX, R12
 | 
			
		||||
 | 
			
		||||
	// r3 += a3×b0
 | 
			
		||||
	MOVQ 24(CX), AX
 | 
			
		||||
	MULQ (BX)
 | 
			
		||||
	ADDQ AX, R13
 | 
			
		||||
	ADCQ DX, R12
 | 
			
		||||
 | 
			
		||||
	// r3 += 19×a4×b4
 | 
			
		||||
	MOVQ   32(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   32(BX)
 | 
			
		||||
	ADDQ   AX, R13
 | 
			
		||||
	ADCQ   DX, R12
 | 
			
		||||
 | 
			
		||||
	// r4 = a0×b4
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ 32(BX)
 | 
			
		||||
	MOVQ AX, R15
 | 
			
		||||
	MOVQ DX, R14
 | 
			
		||||
 | 
			
		||||
	// r4 += a1×b3
 | 
			
		||||
	MOVQ 8(CX), AX
 | 
			
		||||
	MULQ 24(BX)
 | 
			
		||||
	ADDQ AX, R15
 | 
			
		||||
	ADCQ DX, R14
 | 
			
		||||
 | 
			
		||||
	// r4 += a2×b2
 | 
			
		||||
	MOVQ 16(CX), AX
 | 
			
		||||
	MULQ 16(BX)
 | 
			
		||||
	ADDQ AX, R15
 | 
			
		||||
	ADCQ DX, R14
 | 
			
		||||
 | 
			
		||||
	// r4 += a3×b1
 | 
			
		||||
	MOVQ 24(CX), AX
 | 
			
		||||
	MULQ 8(BX)
 | 
			
		||||
	ADDQ AX, R15
 | 
			
		||||
	ADCQ DX, R14
 | 
			
		||||
 | 
			
		||||
	// r4 += a4×b0
 | 
			
		||||
	MOVQ 32(CX), AX
 | 
			
		||||
	MULQ (BX)
 | 
			
		||||
	ADDQ AX, R15
 | 
			
		||||
	ADCQ DX, R14
 | 
			
		||||
 | 
			
		||||
	// First reduction chain
 | 
			
		||||
	MOVQ   $0x0007ffffffffffff, AX
 | 
			
		||||
	SHLQ   $0x0d, DI, SI
 | 
			
		||||
	SHLQ   $0x0d, R9, R8
 | 
			
		||||
	SHLQ   $0x0d, R11, R10
 | 
			
		||||
	SHLQ   $0x0d, R13, R12
 | 
			
		||||
	SHLQ   $0x0d, R15, R14
 | 
			
		||||
	ANDQ   AX, DI
 | 
			
		||||
	IMUL3Q $0x13, R14, R14
 | 
			
		||||
	ADDQ   R14, DI
 | 
			
		||||
	ANDQ   AX, R9
 | 
			
		||||
	ADDQ   SI, R9
 | 
			
		||||
	ANDQ   AX, R11
 | 
			
		||||
	ADDQ   R8, R11
 | 
			
		||||
	ANDQ   AX, R13
 | 
			
		||||
	ADDQ   R10, R13
 | 
			
		||||
	ANDQ   AX, R15
 | 
			
		||||
	ADDQ   R12, R15
 | 
			
		||||
 | 
			
		||||
	// Second reduction chain (carryPropagate)
 | 
			
		||||
	MOVQ   DI, SI
 | 
			
		||||
	SHRQ   $0x33, SI
 | 
			
		||||
	MOVQ   R9, R8
 | 
			
		||||
	SHRQ   $0x33, R8
 | 
			
		||||
	MOVQ   R11, R10
 | 
			
		||||
	SHRQ   $0x33, R10
 | 
			
		||||
	MOVQ   R13, R12
 | 
			
		||||
	SHRQ   $0x33, R12
 | 
			
		||||
	MOVQ   R15, R14
 | 
			
		||||
	SHRQ   $0x33, R14
 | 
			
		||||
	ANDQ   AX, DI
 | 
			
		||||
	IMUL3Q $0x13, R14, R14
 | 
			
		||||
	ADDQ   R14, DI
 | 
			
		||||
	ANDQ   AX, R9
 | 
			
		||||
	ADDQ   SI, R9
 | 
			
		||||
	ANDQ   AX, R11
 | 
			
		||||
	ADDQ   R8, R11
 | 
			
		||||
	ANDQ   AX, R13
 | 
			
		||||
	ADDQ   R10, R13
 | 
			
		||||
	ANDQ   AX, R15
 | 
			
		||||
	ADDQ   R12, R15
 | 
			
		||||
 | 
			
		||||
	// Store output
 | 
			
		||||
	MOVQ out+0(FP), AX
 | 
			
		||||
	MOVQ DI, (AX)
 | 
			
		||||
	MOVQ R9, 8(AX)
 | 
			
		||||
	MOVQ R11, 16(AX)
 | 
			
		||||
	MOVQ R13, 24(AX)
 | 
			
		||||
	MOVQ R15, 32(AX)
 | 
			
		||||
	RET
 | 
			
		||||
 | 
			
		||||
// func feSquare(out *Element, a *Element)
 | 
			
		||||
TEXT ·feSquare(SB), NOSPLIT, $0-16
 | 
			
		||||
	MOVQ a+8(FP), CX
 | 
			
		||||
 | 
			
		||||
	// r0 = l0×l0
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	MULQ (CX)
 | 
			
		||||
	MOVQ AX, SI
 | 
			
		||||
	MOVQ DX, BX
 | 
			
		||||
 | 
			
		||||
	// r0 += 38×l1×l4
 | 
			
		||||
	MOVQ   8(CX), AX
 | 
			
		||||
	IMUL3Q $0x26, AX, AX
 | 
			
		||||
	MULQ   32(CX)
 | 
			
		||||
	ADDQ   AX, SI
 | 
			
		||||
	ADCQ   DX, BX
 | 
			
		||||
 | 
			
		||||
	// r0 += 38×l2×l3
 | 
			
		||||
	MOVQ   16(CX), AX
 | 
			
		||||
	IMUL3Q $0x26, AX, AX
 | 
			
		||||
	MULQ   24(CX)
 | 
			
		||||
	ADDQ   AX, SI
 | 
			
		||||
	ADCQ   DX, BX
 | 
			
		||||
 | 
			
		||||
	// r1 = 2×l0×l1
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	SHLQ $0x01, AX
 | 
			
		||||
	MULQ 8(CX)
 | 
			
		||||
	MOVQ AX, R8
 | 
			
		||||
	MOVQ DX, DI
 | 
			
		||||
 | 
			
		||||
	// r1 += 38×l2×l4
 | 
			
		||||
	MOVQ   16(CX), AX
 | 
			
		||||
	IMUL3Q $0x26, AX, AX
 | 
			
		||||
	MULQ   32(CX)
 | 
			
		||||
	ADDQ   AX, R8
 | 
			
		||||
	ADCQ   DX, DI
 | 
			
		||||
 | 
			
		||||
	// r1 += 19×l3×l3
 | 
			
		||||
	MOVQ   24(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   24(CX)
 | 
			
		||||
	ADDQ   AX, R8
 | 
			
		||||
	ADCQ   DX, DI
 | 
			
		||||
 | 
			
		||||
	// r2 = 2×l0×l2
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	SHLQ $0x01, AX
 | 
			
		||||
	MULQ 16(CX)
 | 
			
		||||
	MOVQ AX, R10
 | 
			
		||||
	MOVQ DX, R9
 | 
			
		||||
 | 
			
		||||
	// r2 += l1×l1
 | 
			
		||||
	MOVQ 8(CX), AX
 | 
			
		||||
	MULQ 8(CX)
 | 
			
		||||
	ADDQ AX, R10
 | 
			
		||||
	ADCQ DX, R9
 | 
			
		||||
 | 
			
		||||
	// r2 += 38×l3×l4
 | 
			
		||||
	MOVQ   24(CX), AX
 | 
			
		||||
	IMUL3Q $0x26, AX, AX
 | 
			
		||||
	MULQ   32(CX)
 | 
			
		||||
	ADDQ   AX, R10
 | 
			
		||||
	ADCQ   DX, R9
 | 
			
		||||
 | 
			
		||||
	// r3 = 2×l0×l3
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	SHLQ $0x01, AX
 | 
			
		||||
	MULQ 24(CX)
 | 
			
		||||
	MOVQ AX, R12
 | 
			
		||||
	MOVQ DX, R11
 | 
			
		||||
 | 
			
		||||
	// r3 += 2×l1×l2
 | 
			
		||||
	MOVQ   8(CX), AX
 | 
			
		||||
	IMUL3Q $0x02, AX, AX
 | 
			
		||||
	MULQ   16(CX)
 | 
			
		||||
	ADDQ   AX, R12
 | 
			
		||||
	ADCQ   DX, R11
 | 
			
		||||
 | 
			
		||||
	// r3 += 19×l4×l4
 | 
			
		||||
	MOVQ   32(CX), AX
 | 
			
		||||
	IMUL3Q $0x13, AX, AX
 | 
			
		||||
	MULQ   32(CX)
 | 
			
		||||
	ADDQ   AX, R12
 | 
			
		||||
	ADCQ   DX, R11
 | 
			
		||||
 | 
			
		||||
	// r4 = 2×l0×l4
 | 
			
		||||
	MOVQ (CX), AX
 | 
			
		||||
	SHLQ $0x01, AX
 | 
			
		||||
	MULQ 32(CX)
 | 
			
		||||
	MOVQ AX, R14
 | 
			
		||||
	MOVQ DX, R13
 | 
			
		||||
 | 
			
		||||
	// r4 += 2×l1×l3
 | 
			
		||||
	MOVQ   8(CX), AX
 | 
			
		||||
	IMUL3Q $0x02, AX, AX
 | 
			
		||||
	MULQ   24(CX)
 | 
			
		||||
	ADDQ   AX, R14
 | 
			
		||||
	ADCQ   DX, R13
 | 
			
		||||
 | 
			
		||||
	// r4 += l2×l2
 | 
			
		||||
	MOVQ 16(CX), AX
 | 
			
		||||
	MULQ 16(CX)
 | 
			
		||||
	ADDQ AX, R14
 | 
			
		||||
	ADCQ DX, R13
 | 
			
		||||
 | 
			
		||||
	// First reduction chain
 | 
			
		||||
	MOVQ   $0x0007ffffffffffff, AX
 | 
			
		||||
	SHLQ   $0x0d, SI, BX
 | 
			
		||||
	SHLQ   $0x0d, R8, DI
 | 
			
		||||
	SHLQ   $0x0d, R10, R9
 | 
			
		||||
	SHLQ   $0x0d, R12, R11
 | 
			
		||||
	SHLQ   $0x0d, R14, R13
 | 
			
		||||
	ANDQ   AX, SI
 | 
			
		||||
	IMUL3Q $0x13, R13, R13
 | 
			
		||||
	ADDQ   R13, SI
 | 
			
		||||
	ANDQ   AX, R8
 | 
			
		||||
	ADDQ   BX, R8
 | 
			
		||||
	ANDQ   AX, R10
 | 
			
		||||
	ADDQ   DI, R10
 | 
			
		||||
	ANDQ   AX, R12
 | 
			
		||||
	ADDQ   R9, R12
 | 
			
		||||
	ANDQ   AX, R14
 | 
			
		||||
	ADDQ   R11, R14
 | 
			
		||||
 | 
			
		||||
	// Second reduction chain (carryPropagate)
 | 
			
		||||
	MOVQ   SI, BX
 | 
			
		||||
	SHRQ   $0x33, BX
 | 
			
		||||
	MOVQ   R8, DI
 | 
			
		||||
	SHRQ   $0x33, DI
 | 
			
		||||
	MOVQ   R10, R9
 | 
			
		||||
	SHRQ   $0x33, R9
 | 
			
		||||
	MOVQ   R12, R11
 | 
			
		||||
	SHRQ   $0x33, R11
 | 
			
		||||
	MOVQ   R14, R13
 | 
			
		||||
	SHRQ   $0x33, R13
 | 
			
		||||
	ANDQ   AX, SI
 | 
			
		||||
	IMUL3Q $0x13, R13, R13
 | 
			
		||||
	ADDQ   R13, SI
 | 
			
		||||
	ANDQ   AX, R8
 | 
			
		||||
	ADDQ   BX, R8
 | 
			
		||||
	ANDQ   AX, R10
 | 
			
		||||
	ADDQ   DI, R10
 | 
			
		||||
	ANDQ   AX, R12
 | 
			
		||||
	ADDQ   R9, R12
 | 
			
		||||
	ANDQ   AX, R14
 | 
			
		||||
	ADDQ   R11, R14
 | 
			
		||||
 | 
			
		||||
	// Store output
 | 
			
		||||
	MOVQ out+0(FP), AX
 | 
			
		||||
	MOVQ SI, (AX)
 | 
			
		||||
	MOVQ R8, 8(AX)
 | 
			
		||||
	MOVQ R10, 16(AX)
 | 
			
		||||
	MOVQ R12, 24(AX)
 | 
			
		||||
	MOVQ R14, 32(AX)
 | 
			
		||||
	RET
 | 
			
		||||
							
								
								
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,12 @@
 | 
			
		||||
// Copyright (c) 2019 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build !amd64 || !gc || purego
 | 
			
		||||
// +build !amd64 !gc purego
 | 
			
		||||
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
 | 
			
		||||
 | 
			
		||||
func feSquare(v, x *Element) { feSquareGeneric(v, x) }
 | 
			
		||||
							
								
								
									
										16
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,16 @@
 | 
			
		||||
// Copyright (c) 2020 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build arm64 && gc && !purego
 | 
			
		||||
// +build arm64,gc,!purego
 | 
			
		||||
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
//go:noescape
 | 
			
		||||
func carryPropagate(v *Element)
 | 
			
		||||
 | 
			
		||||
func (v *Element) carryPropagate() *Element {
 | 
			
		||||
	carryPropagate(v)
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										43
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,43 @@
 | 
			
		||||
// Copyright (c) 2020 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build arm64 && gc && !purego
 | 
			
		||||
// +build arm64,gc,!purego
 | 
			
		||||
 | 
			
		||||
#include "textflag.h"
 | 
			
		||||
 | 
			
		||||
// carryPropagate works exactly like carryPropagateGeneric and uses the
 | 
			
		||||
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
 | 
			
		||||
// avoids loading R0-R4 twice and uses LDP and STP.
 | 
			
		||||
//
 | 
			
		||||
// See https://golang.org/issues/43145 for the main compiler issue.
 | 
			
		||||
//
 | 
			
		||||
// func carryPropagate(v *Element)
 | 
			
		||||
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
 | 
			
		||||
	MOVD v+0(FP), R20
 | 
			
		||||
 | 
			
		||||
	LDP 0(R20), (R0, R1)
 | 
			
		||||
	LDP 16(R20), (R2, R3)
 | 
			
		||||
	MOVD 32(R20), R4
 | 
			
		||||
 | 
			
		||||
	AND $0x7ffffffffffff, R0, R10
 | 
			
		||||
	AND $0x7ffffffffffff, R1, R11
 | 
			
		||||
	AND $0x7ffffffffffff, R2, R12
 | 
			
		||||
	AND $0x7ffffffffffff, R3, R13
 | 
			
		||||
	AND $0x7ffffffffffff, R4, R14
 | 
			
		||||
 | 
			
		||||
	ADD R0>>51, R11, R11
 | 
			
		||||
	ADD R1>>51, R12, R12
 | 
			
		||||
	ADD R2>>51, R13, R13
 | 
			
		||||
	ADD R3>>51, R14, R14
 | 
			
		||||
	// R4>>51 * 19 + R10 -> R10
 | 
			
		||||
	LSR $51, R4, R21
 | 
			
		||||
	MOVD $19, R22
 | 
			
		||||
	MADD R22, R10, R21, R10
 | 
			
		||||
 | 
			
		||||
	STP (R10, R11), 0(R20)
 | 
			
		||||
	STP (R12, R13), 16(R20)
 | 
			
		||||
	MOVD R14, 32(R20)
 | 
			
		||||
 | 
			
		||||
	RET
 | 
			
		||||
							
								
								
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,12 @@
 | 
			
		||||
// Copyright (c) 2021 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
//go:build !arm64 || !gc || purego
 | 
			
		||||
// +build !arm64 !gc purego
 | 
			
		||||
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
func (v *Element) carryPropagate() *Element {
 | 
			
		||||
	return v.carryPropagateGeneric()
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										264
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										264
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,264 @@
 | 
			
		||||
// Copyright (c) 2017 The Go Authors. All rights reserved.
 | 
			
		||||
// Use of this source code is governed by a BSD-style
 | 
			
		||||
// license that can be found in the LICENSE file.
 | 
			
		||||
 | 
			
		||||
package field
 | 
			
		||||
 | 
			
		||||
import "math/bits"
 | 
			
		||||
 | 
			
		||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
 | 
			
		||||
// bits.Mul64 and bits.Add64 intrinsics.
 | 
			
		||||
type uint128 struct {
 | 
			
		||||
	lo, hi uint64
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// mul64 returns a * b.
 | 
			
		||||
func mul64(a, b uint64) uint128 {
 | 
			
		||||
	hi, lo := bits.Mul64(a, b)
 | 
			
		||||
	return uint128{lo, hi}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// addMul64 returns v + a * b.
 | 
			
		||||
func addMul64(v uint128, a, b uint64) uint128 {
 | 
			
		||||
	hi, lo := bits.Mul64(a, b)
 | 
			
		||||
	lo, c := bits.Add64(lo, v.lo, 0)
 | 
			
		||||
	hi, _ = bits.Add64(hi, v.hi, c)
 | 
			
		||||
	return uint128{lo, hi}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
 | 
			
		||||
func shiftRightBy51(a uint128) uint64 {
 | 
			
		||||
	return (a.hi << (64 - 51)) | (a.lo >> 51)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feMulGeneric(v, a, b *Element) {
 | 
			
		||||
	a0 := a.l0
 | 
			
		||||
	a1 := a.l1
 | 
			
		||||
	a2 := a.l2
 | 
			
		||||
	a3 := a.l3
 | 
			
		||||
	a4 := a.l4
 | 
			
		||||
 | 
			
		||||
	b0 := b.l0
 | 
			
		||||
	b1 := b.l1
 | 
			
		||||
	b2 := b.l2
 | 
			
		||||
	b3 := b.l3
 | 
			
		||||
	b4 := b.l4
 | 
			
		||||
 | 
			
		||||
	// Limb multiplication works like pen-and-paper columnar multiplication, but
 | 
			
		||||
	// with 51-bit limbs instead of digits.
 | 
			
		||||
	//
 | 
			
		||||
	//                          a4   a3   a2   a1   a0  x
 | 
			
		||||
	//                          b4   b3   b2   b1   b0  =
 | 
			
		||||
	//                         ------------------------
 | 
			
		||||
	//                        a4b0 a3b0 a2b0 a1b0 a0b0  +
 | 
			
		||||
	//                   a4b1 a3b1 a2b1 a1b1 a0b1       +
 | 
			
		||||
	//              a4b2 a3b2 a2b2 a1b2 a0b2            +
 | 
			
		||||
	//         a4b3 a3b3 a2b3 a1b3 a0b3                 +
 | 
			
		||||
	//    a4b4 a3b4 a2b4 a1b4 a0b4                      =
 | 
			
		||||
	//   ----------------------------------------------
 | 
			
		||||
	//      r8   r7   r6   r5   r4   r3   r2   r1   r0
 | 
			
		||||
	//
 | 
			
		||||
	// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
 | 
			
		||||
	// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
 | 
			
		||||
	// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
 | 
			
		||||
	//
 | 
			
		||||
	// Reduction can be carried out simultaneously to multiplication. For
 | 
			
		||||
	// example, we do not compute r5: whenever the result of a multiplication
 | 
			
		||||
	// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
 | 
			
		||||
	//
 | 
			
		||||
	//            a4b0    a3b0    a2b0    a1b0    a0b0  +
 | 
			
		||||
	//            a3b1    a2b1    a1b1    a0b1 19×a4b1  +
 | 
			
		||||
	//            a2b2    a1b2    a0b2 19×a4b2 19×a3b2  +
 | 
			
		||||
	//            a1b3    a0b3 19×a4b3 19×a3b3 19×a2b3  +
 | 
			
		||||
	//            a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4  =
 | 
			
		||||
	//           --------------------------------------
 | 
			
		||||
	//              r4      r3      r2      r1      r0
 | 
			
		||||
	//
 | 
			
		||||
	// Finally we add up the columns into wide, overlapping limbs.
 | 
			
		||||
 | 
			
		||||
	a1_19 := a1 * 19
 | 
			
		||||
	a2_19 := a2 * 19
 | 
			
		||||
	a3_19 := a3 * 19
 | 
			
		||||
	a4_19 := a4 * 19
 | 
			
		||||
 | 
			
		||||
	// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
 | 
			
		||||
	r0 := mul64(a0, b0)
 | 
			
		||||
	r0 = addMul64(r0, a1_19, b4)
 | 
			
		||||
	r0 = addMul64(r0, a2_19, b3)
 | 
			
		||||
	r0 = addMul64(r0, a3_19, b2)
 | 
			
		||||
	r0 = addMul64(r0, a4_19, b1)
 | 
			
		||||
 | 
			
		||||
	// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
 | 
			
		||||
	r1 := mul64(a0, b1)
 | 
			
		||||
	r1 = addMul64(r1, a1, b0)
 | 
			
		||||
	r1 = addMul64(r1, a2_19, b4)
 | 
			
		||||
	r1 = addMul64(r1, a3_19, b3)
 | 
			
		||||
	r1 = addMul64(r1, a4_19, b2)
 | 
			
		||||
 | 
			
		||||
	// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
 | 
			
		||||
	r2 := mul64(a0, b2)
 | 
			
		||||
	r2 = addMul64(r2, a1, b1)
 | 
			
		||||
	r2 = addMul64(r2, a2, b0)
 | 
			
		||||
	r2 = addMul64(r2, a3_19, b4)
 | 
			
		||||
	r2 = addMul64(r2, a4_19, b3)
 | 
			
		||||
 | 
			
		||||
	// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
 | 
			
		||||
	r3 := mul64(a0, b3)
 | 
			
		||||
	r3 = addMul64(r3, a1, b2)
 | 
			
		||||
	r3 = addMul64(r3, a2, b1)
 | 
			
		||||
	r3 = addMul64(r3, a3, b0)
 | 
			
		||||
	r3 = addMul64(r3, a4_19, b4)
 | 
			
		||||
 | 
			
		||||
	// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
 | 
			
		||||
	r4 := mul64(a0, b4)
 | 
			
		||||
	r4 = addMul64(r4, a1, b3)
 | 
			
		||||
	r4 = addMul64(r4, a2, b2)
 | 
			
		||||
	r4 = addMul64(r4, a3, b1)
 | 
			
		||||
	r4 = addMul64(r4, a4, b0)
 | 
			
		||||
 | 
			
		||||
	// After the multiplication, we need to reduce (carry) the five coefficients
 | 
			
		||||
	// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
 | 
			
		||||
	// to respect the Element invariant.
 | 
			
		||||
	//
 | 
			
		||||
	// Overall, the reduction works the same as carryPropagate, except with
 | 
			
		||||
	// wider inputs: we take the carry for each coefficient by shifting it right
 | 
			
		||||
	// by 51, and add it to the limb above it. The top carry is multiplied by 19
 | 
			
		||||
	// according to the reduction identity and added to the lowest limb.
 | 
			
		||||
	//
 | 
			
		||||
	// The largest coefficient (r0) will be at most 111 bits, which guarantees
 | 
			
		||||
	// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
 | 
			
		||||
	//
 | 
			
		||||
	//     r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
 | 
			
		||||
	//     r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
 | 
			
		||||
	//     r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
 | 
			
		||||
	//     r0 < 2⁷ × 2⁵² × 2⁵²
 | 
			
		||||
	//     r0 < 2¹¹¹
 | 
			
		||||
	//
 | 
			
		||||
	// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
 | 
			
		||||
	// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
 | 
			
		||||
	// allows us to easily apply the reduction identity.
 | 
			
		||||
	//
 | 
			
		||||
	//     r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
 | 
			
		||||
	//     r4 < 5 × 2⁵² × 2⁵²
 | 
			
		||||
	//     r4 < 2¹⁰⁷
 | 
			
		||||
	//
 | 
			
		||||
 | 
			
		||||
	c0 := shiftRightBy51(r0)
 | 
			
		||||
	c1 := shiftRightBy51(r1)
 | 
			
		||||
	c2 := shiftRightBy51(r2)
 | 
			
		||||
	c3 := shiftRightBy51(r3)
 | 
			
		||||
	c4 := shiftRightBy51(r4)
 | 
			
		||||
 | 
			
		||||
	rr0 := r0.lo&maskLow51Bits + c4*19
 | 
			
		||||
	rr1 := r1.lo&maskLow51Bits + c0
 | 
			
		||||
	rr2 := r2.lo&maskLow51Bits + c1
 | 
			
		||||
	rr3 := r3.lo&maskLow51Bits + c2
 | 
			
		||||
	rr4 := r4.lo&maskLow51Bits + c3
 | 
			
		||||
 | 
			
		||||
	// Now all coefficients fit into 64-bit registers but are still too large to
 | 
			
		||||
	// be passed around as a Element. We therefore do one last carry chain,
 | 
			
		||||
	// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
 | 
			
		||||
	*v = Element{rr0, rr1, rr2, rr3, rr4}
 | 
			
		||||
	v.carryPropagate()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
func feSquareGeneric(v, a *Element) {
 | 
			
		||||
	l0 := a.l0
 | 
			
		||||
	l1 := a.l1
 | 
			
		||||
	l2 := a.l2
 | 
			
		||||
	l3 := a.l3
 | 
			
		||||
	l4 := a.l4
 | 
			
		||||
 | 
			
		||||
	// Squaring works precisely like multiplication above, but thanks to its
 | 
			
		||||
	// symmetry we get to group a few terms together.
 | 
			
		||||
	//
 | 
			
		||||
	//                          l4   l3   l2   l1   l0  x
 | 
			
		||||
	//                          l4   l3   l2   l1   l0  =
 | 
			
		||||
	//                         ------------------------
 | 
			
		||||
	//                        l4l0 l3l0 l2l0 l1l0 l0l0  +
 | 
			
		||||
	//                   l4l1 l3l1 l2l1 l1l1 l0l1       +
 | 
			
		||||
	//              l4l2 l3l2 l2l2 l1l2 l0l2            +
 | 
			
		||||
	//         l4l3 l3l3 l2l3 l1l3 l0l3                 +
 | 
			
		||||
	//    l4l4 l3l4 l2l4 l1l4 l0l4                      =
 | 
			
		||||
	//   ----------------------------------------------
 | 
			
		||||
	//      r8   r7   r6   r5   r4   r3   r2   r1   r0
 | 
			
		||||
	//
 | 
			
		||||
	//            l4l0    l3l0    l2l0    l1l0    l0l0  +
 | 
			
		||||
	//            l3l1    l2l1    l1l1    l0l1 19×l4l1  +
 | 
			
		||||
	//            l2l2    l1l2    l0l2 19×l4l2 19×l3l2  +
 | 
			
		||||
	//            l1l3    l0l3 19×l4l3 19×l3l3 19×l2l3  +
 | 
			
		||||
	//            l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4  =
 | 
			
		||||
	//           --------------------------------------
 | 
			
		||||
	//              r4      r3      r2      r1      r0
 | 
			
		||||
	//
 | 
			
		||||
	// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
 | 
			
		||||
	// only three Mul64 and four Add64, instead of five and eight.
 | 
			
		||||
 | 
			
		||||
	l0_2 := l0 * 2
 | 
			
		||||
	l1_2 := l1 * 2
 | 
			
		||||
 | 
			
		||||
	l1_38 := l1 * 38
 | 
			
		||||
	l2_38 := l2 * 38
 | 
			
		||||
	l3_38 := l3 * 38
 | 
			
		||||
 | 
			
		||||
	l3_19 := l3 * 19
 | 
			
		||||
	l4_19 := l4 * 19
 | 
			
		||||
 | 
			
		||||
	// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
 | 
			
		||||
	r0 := mul64(l0, l0)
 | 
			
		||||
	r0 = addMul64(r0, l1_38, l4)
 | 
			
		||||
	r0 = addMul64(r0, l2_38, l3)
 | 
			
		||||
 | 
			
		||||
	// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
 | 
			
		||||
	r1 := mul64(l0_2, l1)
 | 
			
		||||
	r1 = addMul64(r1, l2_38, l4)
 | 
			
		||||
	r1 = addMul64(r1, l3_19, l3)
 | 
			
		||||
 | 
			
		||||
	// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
 | 
			
		||||
	r2 := mul64(l0_2, l2)
 | 
			
		||||
	r2 = addMul64(r2, l1, l1)
 | 
			
		||||
	r2 = addMul64(r2, l3_38, l4)
 | 
			
		||||
 | 
			
		||||
	// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
 | 
			
		||||
	r3 := mul64(l0_2, l3)
 | 
			
		||||
	r3 = addMul64(r3, l1_2, l2)
 | 
			
		||||
	r3 = addMul64(r3, l4_19, l4)
 | 
			
		||||
 | 
			
		||||
	// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
 | 
			
		||||
	r4 := mul64(l0_2, l4)
 | 
			
		||||
	r4 = addMul64(r4, l1_2, l3)
 | 
			
		||||
	r4 = addMul64(r4, l2, l2)
 | 
			
		||||
 | 
			
		||||
	c0 := shiftRightBy51(r0)
 | 
			
		||||
	c1 := shiftRightBy51(r1)
 | 
			
		||||
	c2 := shiftRightBy51(r2)
 | 
			
		||||
	c3 := shiftRightBy51(r3)
 | 
			
		||||
	c4 := shiftRightBy51(r4)
 | 
			
		||||
 | 
			
		||||
	rr0 := r0.lo&maskLow51Bits + c4*19
 | 
			
		||||
	rr1 := r1.lo&maskLow51Bits + c0
 | 
			
		||||
	rr2 := r2.lo&maskLow51Bits + c1
 | 
			
		||||
	rr3 := r3.lo&maskLow51Bits + c2
 | 
			
		||||
	rr4 := r4.lo&maskLow51Bits + c3
 | 
			
		||||
 | 
			
		||||
	*v = Element{rr0, rr1, rr2, rr3, rr4}
 | 
			
		||||
	v.carryPropagate()
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// carryPropagate brings the limbs below 52 bits by applying the reduction
 | 
			
		||||
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. TODO inline
 | 
			
		||||
func (v *Element) carryPropagateGeneric() *Element {
 | 
			
		||||
	c0 := v.l0 >> 51
 | 
			
		||||
	c1 := v.l1 >> 51
 | 
			
		||||
	c2 := v.l2 >> 51
 | 
			
		||||
	c3 := v.l3 >> 51
 | 
			
		||||
	c4 := v.l4 >> 51
 | 
			
		||||
 | 
			
		||||
	v.l0 = v.l0&maskLow51Bits + c4*19
 | 
			
		||||
	v.l1 = v.l1&maskLow51Bits + c0
 | 
			
		||||
	v.l2 = v.l2&maskLow51Bits + c1
 | 
			
		||||
	v.l3 = v.l3&maskLow51Bits + c2
 | 
			
		||||
	v.l4 = v.l4&maskLow51Bits + c3
 | 
			
		||||
 | 
			
		||||
	return v
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										1
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1 @@
 | 
			
		||||
b0c49ae9f59d233526f8934262c5bbbe14d4358d
 | 
			
		||||
							
								
								
									
										19
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,19 @@
 | 
			
		||||
#! /bin/bash
 | 
			
		||||
set -euo pipefail
 | 
			
		||||
 | 
			
		||||
cd "$(git rev-parse --show-toplevel)"
 | 
			
		||||
 | 
			
		||||
STD_PATH=src/crypto/ed25519/internal/edwards25519/field
 | 
			
		||||
LOCAL_PATH=curve25519/internal/field
 | 
			
		||||
LAST_SYNC_REF=$(cat $LOCAL_PATH/sync.checkpoint)
 | 
			
		||||
 | 
			
		||||
git fetch https://go.googlesource.com/go master
 | 
			
		||||
 | 
			
		||||
if git diff --quiet $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH; then
 | 
			
		||||
    echo "No changes."
 | 
			
		||||
else
 | 
			
		||||
    NEW_REF=$(git rev-parse FETCH_HEAD | tee $LOCAL_PATH/sync.checkpoint)
 | 
			
		||||
    echo "Applying changes from $LAST_SYNC_REF to $NEW_REF..."
 | 
			
		||||
    git diff $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH | \
 | 
			
		||||
        git apply -3 --directory=$LOCAL_PATH
 | 
			
		||||
fi
 | 
			
		||||
		Reference in New Issue
	
	Block a user