protobuf: remove gogoproto

Removes gogo/protobuf from buildx and updates to a version of
moby/buildkit where gogo is removed.

This also changes how the proto files are generated. This is because
newer versions of protobuf are more strict about name conflicts. If two
files have the same name (even if they are relative paths) and are used
in different protoc commands, they'll conflict in the registry.

Since protobuf file generation doesn't work very well with
`paths=source_relative`, this removes the `go:generate` expression and
just relies on the dockerfile to perform the generation.

Signed-off-by: Jonathan A. Sternberg <jonathan.sternberg@docker.com>
This commit is contained in:
Jonathan A. Sternberg
2024-10-02 15:51:59 -05:00
parent 8e47387d02
commit b35a0f4718
592 changed files with 46288 additions and 110420 deletions

4
vendor/golang.org/x/crypto/LICENSE generated vendored
View File

@ -1,4 +1,4 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Copyright 2009 The Go Authors.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
@ -10,7 +10,7 @@ notice, this list of conditions and the following disclaimer.
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
* Neither the name of Google LLC nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

View File

@ -4,7 +4,7 @@
// Package bcrypt implements Provos and Mazières's bcrypt adaptive hashing
// algorithm. See http://www.usenix.org/event/usenix99/provos/provos.pdf
package bcrypt // import "golang.org/x/crypto/bcrypt"
package bcrypt
// The code is a port of Provos and Mazières's C implementation.
import (

View File

@ -11,7 +11,7 @@
// Deprecated: any new system should use AES (from crypto/aes, if necessary in
// an AEAD mode like crypto/cipher.NewGCM) or XChaCha20-Poly1305 (from
// golang.org/x/crypto/chacha20poly1305).
package blowfish // import "golang.org/x/crypto/blowfish"
package blowfish
// The code is a port of Bruce Schneier's C implementation.
// See https://www.schneier.com/blowfish.html.

View File

@ -6,9 +6,11 @@
// performs scalar multiplication on the elliptic curve known as Curve25519.
// See RFC 7748.
//
// Starting in Go 1.20, this package is a wrapper for the X25519 implementation
// This package is a wrapper for the X25519 implementation
// in the crypto/ecdh package.
package curve25519 // import "golang.org/x/crypto/curve25519"
package curve25519
import "crypto/ecdh"
// ScalarMult sets dst to the product scalar * point.
//
@ -16,7 +18,13 @@ package curve25519 // import "golang.org/x/crypto/curve25519"
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
// will return an error.
func ScalarMult(dst, scalar, point *[32]byte) {
scalarMult(dst, scalar, point)
if _, err := x25519(dst, scalar[:], point[:]); err != nil {
// The only error condition for x25519 when the inputs are 32 bytes long
// is if the output would have been the all-zero value.
for i := range dst {
dst[i] = 0
}
}
}
// ScalarBaseMult sets dst to the product scalar * base where base is the
@ -25,7 +33,12 @@ func ScalarMult(dst, scalar, point *[32]byte) {
// It is recommended to use the X25519 function with Basepoint instead, as
// copying into fixed size arrays can lead to unexpected bugs.
func ScalarBaseMult(dst, scalar *[32]byte) {
scalarBaseMult(dst, scalar)
curve := ecdh.X25519()
priv, err := curve.NewPrivateKey(scalar[:])
if err != nil {
panic("curve25519: internal error: scalarBaseMult was not 32 bytes")
}
copy(dst[:], priv.PublicKey().Bytes())
}
const (
@ -57,3 +70,21 @@ func X25519(scalar, point []byte) ([]byte, error) {
var dst [32]byte
return x25519(&dst, scalar, point)
}
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
curve := ecdh.X25519()
pub, err := curve.NewPublicKey(point)
if err != nil {
return nil, err
}
priv, err := curve.NewPrivateKey(scalar)
if err != nil {
return nil, err
}
out, err := priv.ECDH(pub)
if err != nil {
return nil, err
}
copy(dst[:], out)
return dst[:], nil
}

View File

@ -1,105 +0,0 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.20
package curve25519
import (
"crypto/subtle"
"errors"
"strconv"
"golang.org/x/crypto/curve25519/internal/field"
)
func scalarMult(dst, scalar, point *[32]byte) {
var e [32]byte
copy(e[:], scalar[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 field.Element
x1.SetBytes(point[:])
x2.One()
x3.Set(&x1)
z3.One()
swap := 0
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int(b)
x2.Swap(&x3, swap)
z2.Swap(&z3, swap)
swap = int(b)
tmp0.Subtract(&x3, &z3)
tmp1.Subtract(&x2, &z2)
x2.Add(&x2, &z2)
z2.Add(&x3, &z3)
z3.Multiply(&tmp0, &x2)
z2.Multiply(&z2, &tmp1)
tmp0.Square(&tmp1)
tmp1.Square(&x2)
x3.Add(&z3, &z2)
z2.Subtract(&z3, &z2)
x2.Multiply(&tmp1, &tmp0)
tmp1.Subtract(&tmp1, &tmp0)
z2.Square(&z2)
z3.Mult32(&tmp1, 121666)
x3.Square(&x3)
tmp0.Add(&tmp0, &z3)
z3.Multiply(&x1, &z2)
z2.Multiply(&tmp1, &tmp0)
}
x2.Swap(&x3, swap)
z2.Swap(&z3, swap)
z2.Invert(&z2)
x2.Multiply(&x2, &z2)
copy(dst[:], x2.Bytes())
}
func scalarBaseMult(dst, scalar *[32]byte) {
checkBasepoint()
scalarMult(dst, scalar, &basePoint)
}
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
var in [32]byte
if l := len(scalar); l != 32 {
return nil, errors.New("bad scalar length: " + strconv.Itoa(l) + ", expected 32")
}
if l := len(point); l != 32 {
return nil, errors.New("bad point length: " + strconv.Itoa(l) + ", expected 32")
}
copy(in[:], scalar)
if &point[0] == &Basepoint[0] {
scalarBaseMult(dst, &in)
} else {
var base, zero [32]byte
copy(base[:], point)
scalarMult(dst, &in, &base)
if subtle.ConstantTimeCompare(dst[:], zero[:]) == 1 {
return nil, errors.New("bad input point: low order point")
}
}
return dst[:], nil
}
func checkBasepoint() {
if subtle.ConstantTimeCompare(Basepoint, []byte{
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}) != 1 {
panic("curve25519: global Basepoint value was modified")
}
}

View File

@ -1,46 +0,0 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.20
package curve25519
import "crypto/ecdh"
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
curve := ecdh.X25519()
pub, err := curve.NewPublicKey(point)
if err != nil {
return nil, err
}
priv, err := curve.NewPrivateKey(scalar)
if err != nil {
return nil, err
}
out, err := priv.ECDH(pub)
if err != nil {
return nil, err
}
copy(dst[:], out)
return dst[:], nil
}
func scalarMult(dst, scalar, point *[32]byte) {
if _, err := x25519(dst, scalar[:], point[:]); err != nil {
// The only error condition for x25519 when the inputs are 32 bytes long
// is if the output would have been the all-zero value.
for i := range dst {
dst[i] = 0
}
}
}
func scalarBaseMult(dst, scalar *[32]byte) {
curve := ecdh.X25519()
priv, err := curve.NewPrivateKey(scalar[:])
if err != nil {
panic("curve25519: internal error: scalarBaseMult was not 32 bytes")
}
copy(dst[:], priv.PublicKey().Bytes())
}

View File

@ -1,7 +0,0 @@
This package is kept in sync with crypto/ed25519/internal/edwards25519/field in
the standard library.
If there are any changes in the standard library that need to be synced to this
package, run sync.sh. It will not overwrite any local changes made since the
previous sync, so it's ok to land changes in this package first, and then sync
to the standard library later.

View File

@ -1,416 +0,0 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package field implements fast arithmetic modulo 2^255-19.
package field
import (
"crypto/subtle"
"encoding/binary"
"math/bits"
)
// Element represents an element of the field GF(2^255-19). Note that this
// is not a cryptographically secure group, and should only be used to interact
// with edwards25519.Point coordinates.
//
// This type works similarly to math/big.Int, and all arguments and receivers
// are allowed to alias.
//
// The zero value is a valid zero element.
type Element struct {
// An element t represents the integer
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
//
// Between operations, all limbs are expected to be lower than 2^52.
l0 uint64
l1 uint64
l2 uint64
l3 uint64
l4 uint64
}
const maskLow51Bits uint64 = (1 << 51) - 1
var feZero = &Element{0, 0, 0, 0, 0}
// Zero sets v = 0, and returns v.
func (v *Element) Zero() *Element {
*v = *feZero
return v
}
var feOne = &Element{1, 0, 0, 0, 0}
// One sets v = 1, and returns v.
func (v *Element) One() *Element {
*v = *feOne
return v
}
// reduce reduces v modulo 2^255 - 19 and returns it.
func (v *Element) reduce() *Element {
v.carryPropagate()
// After the light reduction we now have a field element representation
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
c := (v.l0 + 19) >> 51
c = (v.l1 + c) >> 51
c = (v.l2 + c) >> 51
c = (v.l3 + c) >> 51
c = (v.l4 + c) >> 51
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
// effectively applying the reduction identity to the carry.
v.l0 += 19 * c
v.l1 += v.l0 >> 51
v.l0 = v.l0 & maskLow51Bits
v.l2 += v.l1 >> 51
v.l1 = v.l1 & maskLow51Bits
v.l3 += v.l2 >> 51
v.l2 = v.l2 & maskLow51Bits
v.l4 += v.l3 >> 51
v.l3 = v.l3 & maskLow51Bits
// no additional carry
v.l4 = v.l4 & maskLow51Bits
return v
}
// Add sets v = a + b, and returns v.
func (v *Element) Add(a, b *Element) *Element {
v.l0 = a.l0 + b.l0
v.l1 = a.l1 + b.l1
v.l2 = a.l2 + b.l2
v.l3 = a.l3 + b.l3
v.l4 = a.l4 + b.l4
// Using the generic implementation here is actually faster than the
// assembly. Probably because the body of this function is so simple that
// the compiler can figure out better optimizations by inlining the carry
// propagation. TODO
return v.carryPropagateGeneric()
}
// Subtract sets v = a - b, and returns v.
func (v *Element) Subtract(a, b *Element) *Element {
// We first add 2 * p, to guarantee the subtraction won't underflow, and
// then subtract b (which can be up to 2^255 + 2^13 * 19).
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
return v.carryPropagate()
}
// Negate sets v = -a, and returns v.
func (v *Element) Negate(a *Element) *Element {
return v.Subtract(feZero, a)
}
// Invert sets v = 1/z mod p, and returns v.
//
// If z == 0, Invert returns v = 0.
func (v *Element) Invert(z *Element) *Element {
// Inversion is implemented as exponentiation with exponent p 2. It uses the
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
z2.Square(z) // 2
t.Square(&z2) // 4
t.Square(&t) // 8
z9.Multiply(&t, z) // 9
z11.Multiply(&z9, &z2) // 11
t.Square(&z11) // 22
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
t.Square(&z2_5_0) // 2^6 - 2^1
for i := 0; i < 4; i++ {
t.Square(&t) // 2^10 - 2^5
}
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
t.Square(&z2_10_0) // 2^11 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^20 - 2^10
}
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
t.Square(&z2_20_0) // 2^21 - 2^1
for i := 0; i < 19; i++ {
t.Square(&t) // 2^40 - 2^20
}
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
t.Square(&t) // 2^41 - 2^1
for i := 0; i < 9; i++ {
t.Square(&t) // 2^50 - 2^10
}
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
t.Square(&z2_50_0) // 2^51 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^100 - 2^50
}
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
t.Square(&z2_100_0) // 2^101 - 2^1
for i := 0; i < 99; i++ {
t.Square(&t) // 2^200 - 2^100
}
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
t.Square(&t) // 2^201 - 2^1
for i := 0; i < 49; i++ {
t.Square(&t) // 2^250 - 2^50
}
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
t.Square(&t) // 2^251 - 2^1
t.Square(&t) // 2^252 - 2^2
t.Square(&t) // 2^253 - 2^3
t.Square(&t) // 2^254 - 2^4
t.Square(&t) // 2^255 - 2^5
return v.Multiply(&t, &z11) // 2^255 - 21
}
// Set sets v = a, and returns v.
func (v *Element) Set(a *Element) *Element {
*v = *a
return v
}
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
//
// Consistent with RFC 7748, the most significant bit (the high bit of the
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
// are accepted. Note that this is laxer than specified by RFC 8032.
func (v *Element) SetBytes(x []byte) *Element {
if len(x) != 32 {
panic("edwards25519: invalid field element input size")
}
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
v.l0 = binary.LittleEndian.Uint64(x[0:8])
v.l0 &= maskLow51Bits
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
v.l1 &= maskLow51Bits
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
v.l2 &= maskLow51Bits
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
v.l3 &= maskLow51Bits
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
// Note: not bytes 25:33, shift 4, to avoid overread.
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
v.l4 &= maskLow51Bits
return v
}
// Bytes returns the canonical 32-byte little-endian encoding of v.
func (v *Element) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [32]byte
return v.bytes(&out)
}
func (v *Element) bytes(out *[32]byte) []byte {
t := *v
t.reduce()
var buf [8]byte
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
bitsOffset := i * 51
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
for i, bb := range buf {
off := bitsOffset/8 + i
if off >= len(out) {
break
}
out[off] |= bb
}
}
return out[:]
}
// Equal returns 1 if v and u are equal, and 0 otherwise.
func (v *Element) Equal(u *Element) int {
sa, sv := u.Bytes(), v.Bytes()
return subtle.ConstantTimeCompare(sa, sv)
}
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
// Select sets v to a if cond == 1, and to b if cond == 0.
func (v *Element) Select(a, b *Element, cond int) *Element {
m := mask64Bits(cond)
v.l0 = (m & a.l0) | (^m & b.l0)
v.l1 = (m & a.l1) | (^m & b.l1)
v.l2 = (m & a.l2) | (^m & b.l2)
v.l3 = (m & a.l3) | (^m & b.l3)
v.l4 = (m & a.l4) | (^m & b.l4)
return v
}
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
func (v *Element) Swap(u *Element, cond int) {
m := mask64Bits(cond)
t := m & (v.l0 ^ u.l0)
v.l0 ^= t
u.l0 ^= t
t = m & (v.l1 ^ u.l1)
v.l1 ^= t
u.l1 ^= t
t = m & (v.l2 ^ u.l2)
v.l2 ^= t
u.l2 ^= t
t = m & (v.l3 ^ u.l3)
v.l3 ^= t
u.l3 ^= t
t = m & (v.l4 ^ u.l4)
v.l4 ^= t
u.l4 ^= t
}
// IsNegative returns 1 if v is negative, and 0 otherwise.
func (v *Element) IsNegative() int {
return int(v.Bytes()[0] & 1)
}
// Absolute sets v to |u|, and returns v.
func (v *Element) Absolute(u *Element) *Element {
return v.Select(new(Element).Negate(u), u, u.IsNegative())
}
// Multiply sets v = x * y, and returns v.
func (v *Element) Multiply(x, y *Element) *Element {
feMul(v, x, y)
return v
}
// Square sets v = x * x, and returns v.
func (v *Element) Square(x *Element) *Element {
feSquare(v, x)
return v
}
// Mult32 sets v = x * y, and returns v.
func (v *Element) Mult32(x *Element, y uint32) *Element {
x0lo, x0hi := mul51(x.l0, y)
x1lo, x1hi := mul51(x.l1, y)
x2lo, x2hi := mul51(x.l2, y)
x3lo, x3hi := mul51(x.l3, y)
x4lo, x4hi := mul51(x.l4, y)
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
v.l1 = x1lo + x0hi
v.l2 = x2lo + x1hi
v.l3 = x3lo + x2hi
v.l4 = x4lo + x3hi
// The hi portions are going to be only 32 bits, plus any previous excess,
// so we can skip the carry propagation.
return v
}
// mul51 returns lo + hi * 2⁵¹ = a * b.
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
mh, ml := bits.Mul64(a, uint64(b))
lo = ml & maskLow51Bits
hi = (mh << 13) | (ml >> 51)
return
}
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
func (v *Element) Pow22523(x *Element) *Element {
var t0, t1, t2 Element
t0.Square(x) // x^2
t1.Square(&t0) // x^4
t1.Square(&t1) // x^8
t1.Multiply(x, &t1) // x^9
t0.Multiply(&t0, &t1) // x^11
t0.Square(&t0) // x^22
t0.Multiply(&t1, &t0) // x^31
t1.Square(&t0) // x^62
for i := 1; i < 5; i++ { // x^992
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
t1.Square(&t0) // 2^11 - 2
for i := 1; i < 10; i++ { // 2^20 - 2^10
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^20 - 1
t2.Square(&t1) // 2^21 - 2
for i := 1; i < 20; i++ { // 2^40 - 2^20
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^40 - 1
t1.Square(&t1) // 2^41 - 2
for i := 1; i < 10; i++ { // 2^50 - 2^10
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^50 - 1
t1.Square(&t0) // 2^51 - 2
for i := 1; i < 50; i++ { // 2^100 - 2^50
t1.Square(&t1)
}
t1.Multiply(&t1, &t0) // 2^100 - 1
t2.Square(&t1) // 2^101 - 2
for i := 1; i < 100; i++ { // 2^200 - 2^100
t2.Square(&t2)
}
t1.Multiply(&t2, &t1) // 2^200 - 1
t1.Square(&t1) // 2^201 - 2
for i := 1; i < 50; i++ { // 2^250 - 2^50
t1.Square(&t1)
}
t0.Multiply(&t1, &t0) // 2^250 - 1
t0.Square(&t0) // 2^251 - 2
t0.Square(&t0) // 2^252 - 4
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
}
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
var sqrtM1 = &Element{1718705420411056, 234908883556509,
2233514472574048, 2117202627021982, 765476049583133}
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
//
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
// and returns r and 0.
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
var a, b Element
// r = (u * v3) * (u * v7)^((p-5)/8)
v2 := a.Square(v)
uv3 := b.Multiply(u, b.Multiply(v2, v))
uv7 := a.Multiply(uv3, a.Square(v2))
r.Multiply(uv3, r.Pow22523(uv7))
check := a.Multiply(v, a.Square(r)) // check = v * r^2
uNeg := b.Negate(u)
correctSignSqrt := check.Equal(u)
flippedSignSqrt := check.Equal(uNeg)
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
r.Absolute(r) // Choose the nonnegative square root.
return r, correctSignSqrt | flippedSignSqrt
}

View File

@ -1,15 +0,0 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
//go:build amd64 && gc && !purego
package field
// feMul sets out = a * b. It works like feMulGeneric.
//
//go:noescape
func feMul(out *Element, a *Element, b *Element)
// feSquare sets out = a * a. It works like feSquareGeneric.
//
//go:noescape
func feSquare(out *Element, a *Element)

View File

@ -1,378 +0,0 @@
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
//go:build amd64 && gc && !purego
#include "textflag.h"
// func feMul(out *Element, a *Element, b *Element)
TEXT ·feMul(SB), NOSPLIT, $0-24
MOVQ a+8(FP), CX
MOVQ b+16(FP), BX
// r0 = a0×b0
MOVQ (CX), AX
MULQ (BX)
MOVQ AX, DI
MOVQ DX, SI
// r0 += 19×a1×b4
MOVQ 8(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a2×b3
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a3×b2
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, DI
ADCQ DX, SI
// r0 += 19×a4×b1
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 8(BX)
ADDQ AX, DI
ADCQ DX, SI
// r1 = a0×b1
MOVQ (CX), AX
MULQ 8(BX)
MOVQ AX, R9
MOVQ DX, R8
// r1 += a1×b0
MOVQ 8(CX), AX
MULQ (BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a2×b4
MOVQ 16(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a3×b3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R9
ADCQ DX, R8
// r1 += 19×a4×b2
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 16(BX)
ADDQ AX, R9
ADCQ DX, R8
// r2 = a0×b2
MOVQ (CX), AX
MULQ 16(BX)
MOVQ AX, R11
MOVQ DX, R10
// r2 += a1×b1
MOVQ 8(CX), AX
MULQ 8(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += a2×b0
MOVQ 16(CX), AX
MULQ (BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a3×b4
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R11
ADCQ DX, R10
// r2 += 19×a4×b3
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(BX)
ADDQ AX, R11
ADCQ DX, R10
// r3 = a0×b3
MOVQ (CX), AX
MULQ 24(BX)
MOVQ AX, R13
MOVQ DX, R12
// r3 += a1×b2
MOVQ 8(CX), AX
MULQ 16(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a2×b1
MOVQ 16(CX), AX
MULQ 8(BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += a3×b0
MOVQ 24(CX), AX
MULQ (BX)
ADDQ AX, R13
ADCQ DX, R12
// r3 += 19×a4×b4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(BX)
ADDQ AX, R13
ADCQ DX, R12
// r4 = a0×b4
MOVQ (CX), AX
MULQ 32(BX)
MOVQ AX, R15
MOVQ DX, R14
// r4 += a1×b3
MOVQ 8(CX), AX
MULQ 24(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a2×b2
MOVQ 16(CX), AX
MULQ 16(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a3×b1
MOVQ 24(CX), AX
MULQ 8(BX)
ADDQ AX, R15
ADCQ DX, R14
// r4 += a4×b0
MOVQ 32(CX), AX
MULQ (BX)
ADDQ AX, R15
ADCQ DX, R14
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, DI, SI
SHLQ $0x0d, R9, R8
SHLQ $0x0d, R11, R10
SHLQ $0x0d, R13, R12
SHLQ $0x0d, R15, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Second reduction chain (carryPropagate)
MOVQ DI, SI
SHRQ $0x33, SI
MOVQ R9, R8
SHRQ $0x33, R8
MOVQ R11, R10
SHRQ $0x33, R10
MOVQ R13, R12
SHRQ $0x33, R12
MOVQ R15, R14
SHRQ $0x33, R14
ANDQ AX, DI
IMUL3Q $0x13, R14, R14
ADDQ R14, DI
ANDQ AX, R9
ADDQ SI, R9
ANDQ AX, R11
ADDQ R8, R11
ANDQ AX, R13
ADDQ R10, R13
ANDQ AX, R15
ADDQ R12, R15
// Store output
MOVQ out+0(FP), AX
MOVQ DI, (AX)
MOVQ R9, 8(AX)
MOVQ R11, 16(AX)
MOVQ R13, 24(AX)
MOVQ R15, 32(AX)
RET
// func feSquare(out *Element, a *Element)
TEXT ·feSquare(SB), NOSPLIT, $0-16
MOVQ a+8(FP), CX
// r0 = l0×l0
MOVQ (CX), AX
MULQ (CX)
MOVQ AX, SI
MOVQ DX, BX
// r0 += 38×l1×l4
MOVQ 8(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, SI
ADCQ DX, BX
// r0 += 38×l2×l3
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 24(CX)
ADDQ AX, SI
ADCQ DX, BX
// r1 = 2×l0×l1
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 8(CX)
MOVQ AX, R8
MOVQ DX, DI
// r1 += 38×l2×l4
MOVQ 16(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R8
ADCQ DX, DI
// r1 += 19×l3×l3
MOVQ 24(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 24(CX)
ADDQ AX, R8
ADCQ DX, DI
// r2 = 2×l0×l2
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 16(CX)
MOVQ AX, R10
MOVQ DX, R9
// r2 += l1×l1
MOVQ 8(CX), AX
MULQ 8(CX)
ADDQ AX, R10
ADCQ DX, R9
// r2 += 38×l3×l4
MOVQ 24(CX), AX
IMUL3Q $0x26, AX, AX
MULQ 32(CX)
ADDQ AX, R10
ADCQ DX, R9
// r3 = 2×l0×l3
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 24(CX)
MOVQ AX, R12
MOVQ DX, R11
// r3 += 2×l1×l2
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 16(CX)
ADDQ AX, R12
ADCQ DX, R11
// r3 += 19×l4×l4
MOVQ 32(CX), AX
IMUL3Q $0x13, AX, AX
MULQ 32(CX)
ADDQ AX, R12
ADCQ DX, R11
// r4 = 2×l0×l4
MOVQ (CX), AX
SHLQ $0x01, AX
MULQ 32(CX)
MOVQ AX, R14
MOVQ DX, R13
// r4 += 2×l1×l3
MOVQ 8(CX), AX
IMUL3Q $0x02, AX, AX
MULQ 24(CX)
ADDQ AX, R14
ADCQ DX, R13
// r4 += l2×l2
MOVQ 16(CX), AX
MULQ 16(CX)
ADDQ AX, R14
ADCQ DX, R13
// First reduction chain
MOVQ $0x0007ffffffffffff, AX
SHLQ $0x0d, SI, BX
SHLQ $0x0d, R8, DI
SHLQ $0x0d, R10, R9
SHLQ $0x0d, R12, R11
SHLQ $0x0d, R14, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Second reduction chain (carryPropagate)
MOVQ SI, BX
SHRQ $0x33, BX
MOVQ R8, DI
SHRQ $0x33, DI
MOVQ R10, R9
SHRQ $0x33, R9
MOVQ R12, R11
SHRQ $0x33, R11
MOVQ R14, R13
SHRQ $0x33, R13
ANDQ AX, SI
IMUL3Q $0x13, R13, R13
ADDQ R13, SI
ANDQ AX, R8
ADDQ BX, R8
ANDQ AX, R10
ADDQ DI, R10
ANDQ AX, R12
ADDQ R9, R12
ANDQ AX, R14
ADDQ R11, R14
// Store output
MOVQ out+0(FP), AX
MOVQ SI, (AX)
MOVQ R8, 8(AX)
MOVQ R10, 16(AX)
MOVQ R12, 24(AX)
MOVQ R14, 32(AX)
RET

View File

@ -1,11 +0,0 @@
// Copyright (c) 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || !gc || purego
package field
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
func feSquare(v, x *Element) { feSquareGeneric(v, x) }

View File

@ -1,15 +0,0 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build arm64 && gc && !purego
package field
//go:noescape
func carryPropagate(v *Element)
func (v *Element) carryPropagate() *Element {
carryPropagate(v)
return v
}

View File

@ -1,42 +0,0 @@
// Copyright (c) 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build arm64 && gc && !purego
#include "textflag.h"
// carryPropagate works exactly like carryPropagateGeneric and uses the
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
// avoids loading R0-R4 twice and uses LDP and STP.
//
// See https://golang.org/issues/43145 for the main compiler issue.
//
// func carryPropagate(v *Element)
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
MOVD v+0(FP), R20
LDP 0(R20), (R0, R1)
LDP 16(R20), (R2, R3)
MOVD 32(R20), R4
AND $0x7ffffffffffff, R0, R10
AND $0x7ffffffffffff, R1, R11
AND $0x7ffffffffffff, R2, R12
AND $0x7ffffffffffff, R3, R13
AND $0x7ffffffffffff, R4, R14
ADD R0>>51, R11, R11
ADD R1>>51, R12, R12
ADD R2>>51, R13, R13
ADD R3>>51, R14, R14
// R4>>51 * 19 + R10 -> R10
LSR $51, R4, R21
MOVD $19, R22
MADD R22, R10, R21, R10
STP (R10, R11), 0(R20)
STP (R12, R13), 16(R20)
MOVD R14, 32(R20)
RET

View File

@ -1,11 +0,0 @@
// Copyright (c) 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !arm64 || !gc || purego
package field
func (v *Element) carryPropagate() *Element {
return v.carryPropagateGeneric()
}

View File

@ -1,264 +0,0 @@
// Copyright (c) 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package field
import "math/bits"
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
// bits.Mul64 and bits.Add64 intrinsics.
type uint128 struct {
lo, hi uint64
}
// mul64 returns a * b.
func mul64(a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
return uint128{lo, hi}
}
// addMul64 returns v + a * b.
func addMul64(v uint128, a, b uint64) uint128 {
hi, lo := bits.Mul64(a, b)
lo, c := bits.Add64(lo, v.lo, 0)
hi, _ = bits.Add64(hi, v.hi, c)
return uint128{lo, hi}
}
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
func shiftRightBy51(a uint128) uint64 {
return (a.hi << (64 - 51)) | (a.lo >> 51)
}
func feMulGeneric(v, a, b *Element) {
a0 := a.l0
a1 := a.l1
a2 := a.l2
a3 := a.l3
a4 := a.l4
b0 := b.l0
b1 := b.l1
b2 := b.l2
b3 := b.l3
b4 := b.l4
// Limb multiplication works like pen-and-paper columnar multiplication, but
// with 51-bit limbs instead of digits.
//
// a4 a3 a2 a1 a0 x
// b4 b3 b2 b1 b0 =
// ------------------------
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a4b1 a3b1 a2b1 a1b1 a0b1 +
// a4b2 a3b2 a2b2 a1b2 a0b2 +
// a4b3 a3b3 a2b3 a1b3 a0b3 +
// a4b4 a3b4 a2b4 a1b4 a0b4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
//
// Reduction can be carried out simultaneously to multiplication. For
// example, we do not compute r5: whenever the result of a multiplication
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
//
// a4b0 a3b0 a2b0 a1b0 a0b0 +
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// Finally we add up the columns into wide, overlapping limbs.
a1_19 := a1 * 19
a2_19 := a2 * 19
a3_19 := a3 * 19
a4_19 := a4 * 19
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
r0 := mul64(a0, b0)
r0 = addMul64(r0, a1_19, b4)
r0 = addMul64(r0, a2_19, b3)
r0 = addMul64(r0, a3_19, b2)
r0 = addMul64(r0, a4_19, b1)
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
r1 := mul64(a0, b1)
r1 = addMul64(r1, a1, b0)
r1 = addMul64(r1, a2_19, b4)
r1 = addMul64(r1, a3_19, b3)
r1 = addMul64(r1, a4_19, b2)
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
r2 := mul64(a0, b2)
r2 = addMul64(r2, a1, b1)
r2 = addMul64(r2, a2, b0)
r2 = addMul64(r2, a3_19, b4)
r2 = addMul64(r2, a4_19, b3)
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
r3 := mul64(a0, b3)
r3 = addMul64(r3, a1, b2)
r3 = addMul64(r3, a2, b1)
r3 = addMul64(r3, a3, b0)
r3 = addMul64(r3, a4_19, b4)
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
r4 := mul64(a0, b4)
r4 = addMul64(r4, a1, b3)
r4 = addMul64(r4, a2, b2)
r4 = addMul64(r4, a3, b1)
r4 = addMul64(r4, a4, b0)
// After the multiplication, we need to reduce (carry) the five coefficients
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
// to respect the Element invariant.
//
// Overall, the reduction works the same as carryPropagate, except with
// wider inputs: we take the carry for each coefficient by shifting it right
// by 51, and add it to the limb above it. The top carry is multiplied by 19
// according to the reduction identity and added to the lowest limb.
//
// The largest coefficient (r0) will be at most 111 bits, which guarantees
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
//
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
// r0 < 2⁷ × 2⁵² × 2⁵²
// r0 < 2¹¹¹
//
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
// allows us to easily apply the reduction identity.
//
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
// r4 < 5 × 2⁵² × 2⁵²
// r4 < 2¹⁰⁷
//
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
// Now all coefficients fit into 64-bit registers but are still too large to
// be passed around as a Element. We therefore do one last carry chain,
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
func feSquareGeneric(v, a *Element) {
l0 := a.l0
l1 := a.l1
l2 := a.l2
l3 := a.l3
l4 := a.l4
// Squaring works precisely like multiplication above, but thanks to its
// symmetry we get to group a few terms together.
//
// l4 l3 l2 l1 l0 x
// l4 l3 l2 l1 l0 =
// ------------------------
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l4l1 l3l1 l2l1 l1l1 l0l1 +
// l4l2 l3l2 l2l2 l1l2 l0l2 +
// l4l3 l3l3 l2l3 l1l3 l0l3 +
// l4l4 l3l4 l2l4 l1l4 l0l4 =
// ----------------------------------------------
// r8 r7 r6 r5 r4 r3 r2 r1 r0
//
// l4l0 l3l0 l2l0 l1l0 l0l0 +
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
// --------------------------------------
// r4 r3 r2 r1 r0
//
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
// only three Mul64 and four Add64, instead of five and eight.
l0_2 := l0 * 2
l1_2 := l1 * 2
l1_38 := l1 * 38
l2_38 := l2 * 38
l3_38 := l3 * 38
l3_19 := l3 * 19
l4_19 := l4 * 19
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
r0 := mul64(l0, l0)
r0 = addMul64(r0, l1_38, l4)
r0 = addMul64(r0, l2_38, l3)
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
r1 := mul64(l0_2, l1)
r1 = addMul64(r1, l2_38, l4)
r1 = addMul64(r1, l3_19, l3)
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
r2 := mul64(l0_2, l2)
r2 = addMul64(r2, l1, l1)
r2 = addMul64(r2, l3_38, l4)
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
r3 := mul64(l0_2, l3)
r3 = addMul64(r3, l1_2, l2)
r3 = addMul64(r3, l4_19, l4)
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
r4 := mul64(l0_2, l4)
r4 = addMul64(r4, l1_2, l3)
r4 = addMul64(r4, l2, l2)
c0 := shiftRightBy51(r0)
c1 := shiftRightBy51(r1)
c2 := shiftRightBy51(r2)
c3 := shiftRightBy51(r3)
c4 := shiftRightBy51(r4)
rr0 := r0.lo&maskLow51Bits + c4*19
rr1 := r1.lo&maskLow51Bits + c0
rr2 := r2.lo&maskLow51Bits + c1
rr3 := r3.lo&maskLow51Bits + c2
rr4 := r4.lo&maskLow51Bits + c3
*v = Element{rr0, rr1, rr2, rr3, rr4}
v.carryPropagate()
}
// carryPropagateGeneric brings the limbs below 52 bits by applying the reduction
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. TODO inline
func (v *Element) carryPropagateGeneric() *Element {
c0 := v.l0 >> 51
c1 := v.l1 >> 51
c2 := v.l2 >> 51
c3 := v.l3 >> 51
c4 := v.l4 >> 51
v.l0 = v.l0&maskLow51Bits + c4*19
v.l1 = v.l1&maskLow51Bits + c0
v.l2 = v.l2&maskLow51Bits + c1
v.l3 = v.l3&maskLow51Bits + c2
v.l4 = v.l4&maskLow51Bits + c3
return v
}

View File

@ -1 +0,0 @@
b0c49ae9f59d233526f8934262c5bbbe14d4358d

View File

@ -1,19 +0,0 @@
#! /bin/bash
set -euo pipefail
cd "$(git rev-parse --show-toplevel)"
STD_PATH=src/crypto/ed25519/internal/edwards25519/field
LOCAL_PATH=curve25519/internal/field
LAST_SYNC_REF=$(cat $LOCAL_PATH/sync.checkpoint)
git fetch https://go.googlesource.com/go master
if git diff --quiet $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH; then
echo "No changes."
else
NEW_REF=$(git rev-parse FETCH_HEAD | tee $LOCAL_PATH/sync.checkpoint)
echo "Applying changes from $LAST_SYNC_REF to $NEW_REF..."
git diff $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH | \
git apply -3 --directory=$LOCAL_PATH
fi

View File

@ -11,9 +11,7 @@
// operations with the same key more efficient. This package refers to the RFC
// 8032 private key as the “seed”.
//
// Beginning with Go 1.13, the functionality of this package was moved to the
// standard library as crypto/ed25519. This package only acts as a compatibility
// wrapper.
// This package is a wrapper around the standard library crypto/ed25519 package.
package ed25519
import (

View File

@ -1,108 +1,93 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by command: go run sum_amd64_asm.go -out ../sum_amd64.s -pkg poly1305. DO NOT EDIT.
//go:build gc && !purego
#include "textflag.h"
#define POLY1305_ADD(msg, h0, h1, h2) \
ADDQ 0(msg), h0; \
ADCQ 8(msg), h1; \
ADCQ $1, h2; \
LEAQ 16(msg), msg
#define POLY1305_MUL(h0, h1, h2, r0, r1, t0, t1, t2, t3) \
MOVQ r0, AX; \
MULQ h0; \
MOVQ AX, t0; \
MOVQ DX, t1; \
MOVQ r0, AX; \
MULQ h1; \
ADDQ AX, t1; \
ADCQ $0, DX; \
MOVQ r0, t2; \
IMULQ h2, t2; \
ADDQ DX, t2; \
\
MOVQ r1, AX; \
MULQ h0; \
ADDQ AX, t1; \
ADCQ $0, DX; \
MOVQ DX, h0; \
MOVQ r1, t3; \
IMULQ h2, t3; \
MOVQ r1, AX; \
MULQ h1; \
ADDQ AX, t2; \
ADCQ DX, t3; \
ADDQ h0, t2; \
ADCQ $0, t3; \
\
MOVQ t0, h0; \
MOVQ t1, h1; \
MOVQ t2, h2; \
ANDQ $3, h2; \
MOVQ t2, t0; \
ANDQ $0xFFFFFFFFFFFFFFFC, t0; \
ADDQ t0, h0; \
ADCQ t3, h1; \
ADCQ $0, h2; \
SHRQ $2, t3, t2; \
SHRQ $2, t3; \
ADDQ t2, h0; \
ADCQ t3, h1; \
ADCQ $0, h2
// func update(state *[7]uint64, msg []byte)
// func update(state *macState, msg []byte)
TEXT ·update(SB), $0-32
MOVQ state+0(FP), DI
MOVQ msg_base+8(FP), SI
MOVQ msg_len+16(FP), R15
MOVQ 0(DI), R8 // h0
MOVQ 8(DI), R9 // h1
MOVQ 16(DI), R10 // h2
MOVQ 24(DI), R11 // r0
MOVQ 32(DI), R12 // r1
CMPQ R15, $16
MOVQ (DI), R8
MOVQ 8(DI), R9
MOVQ 16(DI), R10
MOVQ 24(DI), R11
MOVQ 32(DI), R12
CMPQ R15, $0x10
JB bytes_between_0_and_15
loop:
POLY1305_ADD(SI, R8, R9, R10)
ADDQ (SI), R8
ADCQ 8(SI), R9
ADCQ $0x01, R10
LEAQ 16(SI), SI
multiply:
POLY1305_MUL(R8, R9, R10, R11, R12, BX, CX, R13, R14)
SUBQ $16, R15
CMPQ R15, $16
JAE loop
MOVQ R11, AX
MULQ R8
MOVQ AX, BX
MOVQ DX, CX
MOVQ R11, AX
MULQ R9
ADDQ AX, CX
ADCQ $0x00, DX
MOVQ R11, R13
IMULQ R10, R13
ADDQ DX, R13
MOVQ R12, AX
MULQ R8
ADDQ AX, CX
ADCQ $0x00, DX
MOVQ DX, R8
MOVQ R12, R14
IMULQ R10, R14
MOVQ R12, AX
MULQ R9
ADDQ AX, R13
ADCQ DX, R14
ADDQ R8, R13
ADCQ $0x00, R14
MOVQ BX, R8
MOVQ CX, R9
MOVQ R13, R10
ANDQ $0x03, R10
MOVQ R13, BX
ANDQ $-4, BX
ADDQ BX, R8
ADCQ R14, R9
ADCQ $0x00, R10
SHRQ $0x02, R14, R13
SHRQ $0x02, R14
ADDQ R13, R8
ADCQ R14, R9
ADCQ $0x00, R10
SUBQ $0x10, R15
CMPQ R15, $0x10
JAE loop
bytes_between_0_and_15:
TESTQ R15, R15
JZ done
MOVQ $1, BX
MOVQ $0x00000001, BX
XORQ CX, CX
XORQ R13, R13
ADDQ R15, SI
flush_buffer:
SHLQ $8, BX, CX
SHLQ $8, BX
SHLQ $0x08, BX, CX
SHLQ $0x08, BX
MOVB -1(SI), R13
XORQ R13, BX
DECQ SI
DECQ R15
JNZ flush_buffer
ADDQ BX, R8
ADCQ CX, R9
ADCQ $0, R10
MOVQ $16, R15
ADCQ $0x00, R10
MOVQ $0x00000010, R15
JMP multiply
done:
MOVQ R8, 0(DI)
MOVQ R8, (DI)
MOVQ R9, 8(DI)
MOVQ R10, 16(DI)
RET

View File

@ -16,7 +16,7 @@ Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
choose, you can pass the `New` functions from the different SHA packages to
pbkdf2.Key.
*/
package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
package pbkdf2
import (
"crypto/hmac"

View File

@ -10,7 +10,7 @@
// References:
//
// [PROTOCOL.agent]: https://tools.ietf.org/html/draft-miller-ssh-agent-00
package agent // import "golang.org/x/crypto/ssh/agent"
package agent
import (
"bytes"

View File

@ -175,6 +175,15 @@ func (r *keyring) Add(key AddedKey) error {
p.expire = &t
}
// If we already have a Signer with the same public key, replace it with the
// new one.
for idx, k := range r.keys {
if bytes.Equal(k.signer.PublicKey().Marshal(), p.signer.PublicKey().Marshal()) {
r.keys[idx] = p
return nil
}
}
r.keys = append(r.keys, p)
return nil

View File

@ -71,6 +71,10 @@ func (c *connection) clientAuthenticate(config *ClientConfig) error {
for auth := AuthMethod(new(noneAuth)); auth != nil; {
ok, methods, err := auth.auth(sessionID, config.User, c.transport, config.Rand, extensions)
if err != nil {
// On disconnect, return error immediately
if _, ok := err.(*disconnectMsg); ok {
return err
}
// We return the error later if there is no other method left to
// try.
ok = authFailure

View File

@ -20,4 +20,4 @@ References:
This package does not fall under the stability promise of the Go language itself,
so its API may be changed when pressing needs arise.
*/
package ssh // import "golang.org/x/crypto/ssh"
package ssh

View File

@ -488,7 +488,49 @@ func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
h := hash.New()
h.Write(data)
digest := h.Sum(nil)
return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
// Signatures in PKCS1v15 must match the key's modulus in
// length. However with SSH, some signers provide RSA
// signatures which are missing the MSB 0's of the bignum
// represented. With ssh-rsa signatures, this is encouraged by
// the spec (even though e.g. OpenSSH will give the full
// length unconditionally). With rsa-sha2-* signatures, the
// verifier is allowed to support these, even though they are
// out of spec. See RFC 4253 Section 6.6 for ssh-rsa and RFC
// 8332 Section 3 for rsa-sha2-* details.
//
// In practice:
// * OpenSSH always allows "short" signatures:
// https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L526
// but always generates padded signatures:
// https://github.com/openssh/openssh-portable/blob/V_9_8_P1/ssh-rsa.c#L439
//
// * PuTTY versions 0.81 and earlier will generate short
// signatures for all RSA signature variants. Note that
// PuTTY is embedded in other software, such as WinSCP and
// FileZilla. At the time of writing, a patch has been
// applied to PuTTY to generate padded signatures for
// rsa-sha2-*, but not yet released:
// https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=a5bcf3d384e1bf15a51a6923c3724cbbee022d8e
//
// * SSH.NET versions 2024.0.0 and earlier will generate short
// signatures for all RSA signature variants, fixed in 2024.1.0:
// https://github.com/sshnet/SSH.NET/releases/tag/2024.1.0
//
// As a result, we pad these up to the key size by inserting
// leading 0's.
//
// Note that support for short signatures with rsa-sha2-* may
// be removed in the future due to such signatures not being
// allowed by the spec.
blob := sig.Blob
keySize := (*rsa.PublicKey)(r).Size()
if len(blob) < keySize {
padded := make([]byte, keySize)
copy(padded[keySize-len(blob):], blob)
blob = padded
}
return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, blob)
}
func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
@ -904,6 +946,10 @@ func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
return errors.New("ssh: signature did not verify")
}
func (k *skECDSAPublicKey) CryptoPublicKey() crypto.PublicKey {
return &k.PublicKey
}
type skEd25519PublicKey struct {
// application is a URL-like string, typically "ssh:" for SSH.
// see openssh/PROTOCOL.u2f for details.
@ -1000,6 +1046,10 @@ func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
return nil
}
func (k *skEd25519PublicKey) CryptoPublicKey() crypto.PublicKey {
return k.PublicKey
}
// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
// *ecdsa.PrivateKey or any other crypto.Signer and returns a
// corresponding Signer instance. ECDSA keys must use P-256, P-384 or

View File

@ -462,6 +462,24 @@ func (p *PartialSuccessError) Error() string {
// It is returned in ServerAuthError.Errors from NewServerConn.
var ErrNoAuth = errors.New("ssh: no auth passed yet")
// BannerError is an error that can be returned by authentication handlers in
// ServerConfig to send a banner message to the client.
type BannerError struct {
Err error
Message string
}
func (b *BannerError) Unwrap() error {
return b.Err
}
func (b *BannerError) Error() string {
if b.Err == nil {
return b.Message
}
return b.Err.Error()
}
func (s *connection) serverAuthenticate(config *ServerConfig) (*Permissions, error) {
sessionID := s.transport.getSessionID()
var cache pubKeyCache
@ -734,6 +752,18 @@ userAuthLoop:
config.AuthLogCallback(s, userAuthReq.Method, authErr)
}
var bannerErr *BannerError
if errors.As(authErr, &bannerErr) {
if bannerErr.Message != "" {
bannerMsg := &userAuthBannerMsg{
Message: bannerErr.Message,
}
if err := s.transport.writePacket(Marshal(bannerMsg)); err != nil {
return nil, err
}
}
}
if authErr == nil {
break userAuthLoop
}