mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-12 14:37:08 +08:00
protobuf: remove gogoproto
Removes gogo/protobuf from buildx and updates to a version of moby/buildkit where gogo is removed. This also changes how the proto files are generated. This is because newer versions of protobuf are more strict about name conflicts. If two files have the same name (even if they are relative paths) and are used in different protoc commands, they'll conflict in the registry. Since protobuf file generation doesn't work very well with `paths=source_relative`, this removes the `go:generate` expression and just relies on the dockerfile to perform the generation. Signed-off-by: Jonathan A. Sternberg <jonathan.sternberg@docker.com>
This commit is contained in:
39
vendor/golang.org/x/crypto/curve25519/curve25519.go
generated
vendored
39
vendor/golang.org/x/crypto/curve25519/curve25519.go
generated
vendored
@ -6,9 +6,11 @@
|
||||
// performs scalar multiplication on the elliptic curve known as Curve25519.
|
||||
// See RFC 7748.
|
||||
//
|
||||
// Starting in Go 1.20, this package is a wrapper for the X25519 implementation
|
||||
// This package is a wrapper for the X25519 implementation
|
||||
// in the crypto/ecdh package.
|
||||
package curve25519 // import "golang.org/x/crypto/curve25519"
|
||||
package curve25519
|
||||
|
||||
import "crypto/ecdh"
|
||||
|
||||
// ScalarMult sets dst to the product scalar * point.
|
||||
//
|
||||
@ -16,7 +18,13 @@ package curve25519 // import "golang.org/x/crypto/curve25519"
|
||||
// zeroes, irrespective of the scalar. Instead, use the X25519 function, which
|
||||
// will return an error.
|
||||
func ScalarMult(dst, scalar, point *[32]byte) {
|
||||
scalarMult(dst, scalar, point)
|
||||
if _, err := x25519(dst, scalar[:], point[:]); err != nil {
|
||||
// The only error condition for x25519 when the inputs are 32 bytes long
|
||||
// is if the output would have been the all-zero value.
|
||||
for i := range dst {
|
||||
dst[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ScalarBaseMult sets dst to the product scalar * base where base is the
|
||||
@ -25,7 +33,12 @@ func ScalarMult(dst, scalar, point *[32]byte) {
|
||||
// It is recommended to use the X25519 function with Basepoint instead, as
|
||||
// copying into fixed size arrays can lead to unexpected bugs.
|
||||
func ScalarBaseMult(dst, scalar *[32]byte) {
|
||||
scalarBaseMult(dst, scalar)
|
||||
curve := ecdh.X25519()
|
||||
priv, err := curve.NewPrivateKey(scalar[:])
|
||||
if err != nil {
|
||||
panic("curve25519: internal error: scalarBaseMult was not 32 bytes")
|
||||
}
|
||||
copy(dst[:], priv.PublicKey().Bytes())
|
||||
}
|
||||
|
||||
const (
|
||||
@ -57,3 +70,21 @@ func X25519(scalar, point []byte) ([]byte, error) {
|
||||
var dst [32]byte
|
||||
return x25519(&dst, scalar, point)
|
||||
}
|
||||
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
curve := ecdh.X25519()
|
||||
pub, err := curve.NewPublicKey(point)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
priv, err := curve.NewPrivateKey(scalar)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
out, err := priv.ECDH(pub)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
copy(dst[:], out)
|
||||
return dst[:], nil
|
||||
}
|
||||
|
105
vendor/golang.org/x/crypto/curve25519/curve25519_compat.go
generated
vendored
105
vendor/golang.org/x/crypto/curve25519/curve25519_compat.go
generated
vendored
@ -1,105 +0,0 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !go1.20
|
||||
|
||||
package curve25519
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"errors"
|
||||
"strconv"
|
||||
|
||||
"golang.org/x/crypto/curve25519/internal/field"
|
||||
)
|
||||
|
||||
func scalarMult(dst, scalar, point *[32]byte) {
|
||||
var e [32]byte
|
||||
|
||||
copy(e[:], scalar[:])
|
||||
e[0] &= 248
|
||||
e[31] &= 127
|
||||
e[31] |= 64
|
||||
|
||||
var x1, x2, z2, x3, z3, tmp0, tmp1 field.Element
|
||||
x1.SetBytes(point[:])
|
||||
x2.One()
|
||||
x3.Set(&x1)
|
||||
z3.One()
|
||||
|
||||
swap := 0
|
||||
for pos := 254; pos >= 0; pos-- {
|
||||
b := e[pos/8] >> uint(pos&7)
|
||||
b &= 1
|
||||
swap ^= int(b)
|
||||
x2.Swap(&x3, swap)
|
||||
z2.Swap(&z3, swap)
|
||||
swap = int(b)
|
||||
|
||||
tmp0.Subtract(&x3, &z3)
|
||||
tmp1.Subtract(&x2, &z2)
|
||||
x2.Add(&x2, &z2)
|
||||
z2.Add(&x3, &z3)
|
||||
z3.Multiply(&tmp0, &x2)
|
||||
z2.Multiply(&z2, &tmp1)
|
||||
tmp0.Square(&tmp1)
|
||||
tmp1.Square(&x2)
|
||||
x3.Add(&z3, &z2)
|
||||
z2.Subtract(&z3, &z2)
|
||||
x2.Multiply(&tmp1, &tmp0)
|
||||
tmp1.Subtract(&tmp1, &tmp0)
|
||||
z2.Square(&z2)
|
||||
|
||||
z3.Mult32(&tmp1, 121666)
|
||||
x3.Square(&x3)
|
||||
tmp0.Add(&tmp0, &z3)
|
||||
z3.Multiply(&x1, &z2)
|
||||
z2.Multiply(&tmp1, &tmp0)
|
||||
}
|
||||
|
||||
x2.Swap(&x3, swap)
|
||||
z2.Swap(&z3, swap)
|
||||
|
||||
z2.Invert(&z2)
|
||||
x2.Multiply(&x2, &z2)
|
||||
copy(dst[:], x2.Bytes())
|
||||
}
|
||||
|
||||
func scalarBaseMult(dst, scalar *[32]byte) {
|
||||
checkBasepoint()
|
||||
scalarMult(dst, scalar, &basePoint)
|
||||
}
|
||||
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
var in [32]byte
|
||||
if l := len(scalar); l != 32 {
|
||||
return nil, errors.New("bad scalar length: " + strconv.Itoa(l) + ", expected 32")
|
||||
}
|
||||
if l := len(point); l != 32 {
|
||||
return nil, errors.New("bad point length: " + strconv.Itoa(l) + ", expected 32")
|
||||
}
|
||||
copy(in[:], scalar)
|
||||
if &point[0] == &Basepoint[0] {
|
||||
scalarBaseMult(dst, &in)
|
||||
} else {
|
||||
var base, zero [32]byte
|
||||
copy(base[:], point)
|
||||
scalarMult(dst, &in, &base)
|
||||
if subtle.ConstantTimeCompare(dst[:], zero[:]) == 1 {
|
||||
return nil, errors.New("bad input point: low order point")
|
||||
}
|
||||
}
|
||||
return dst[:], nil
|
||||
}
|
||||
|
||||
func checkBasepoint() {
|
||||
if subtle.ConstantTimeCompare(Basepoint, []byte{
|
||||
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}) != 1 {
|
||||
panic("curve25519: global Basepoint value was modified")
|
||||
}
|
||||
}
|
46
vendor/golang.org/x/crypto/curve25519/curve25519_go120.go
generated
vendored
46
vendor/golang.org/x/crypto/curve25519/curve25519_go120.go
generated
vendored
@ -1,46 +0,0 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build go1.20
|
||||
|
||||
package curve25519
|
||||
|
||||
import "crypto/ecdh"
|
||||
|
||||
func x25519(dst *[32]byte, scalar, point []byte) ([]byte, error) {
|
||||
curve := ecdh.X25519()
|
||||
pub, err := curve.NewPublicKey(point)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
priv, err := curve.NewPrivateKey(scalar)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
out, err := priv.ECDH(pub)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
copy(dst[:], out)
|
||||
return dst[:], nil
|
||||
}
|
||||
|
||||
func scalarMult(dst, scalar, point *[32]byte) {
|
||||
if _, err := x25519(dst, scalar[:], point[:]); err != nil {
|
||||
// The only error condition for x25519 when the inputs are 32 bytes long
|
||||
// is if the output would have been the all-zero value.
|
||||
for i := range dst {
|
||||
dst[i] = 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func scalarBaseMult(dst, scalar *[32]byte) {
|
||||
curve := ecdh.X25519()
|
||||
priv, err := curve.NewPrivateKey(scalar[:])
|
||||
if err != nil {
|
||||
panic("curve25519: internal error: scalarBaseMult was not 32 bytes")
|
||||
}
|
||||
copy(dst[:], priv.PublicKey().Bytes())
|
||||
}
|
7
vendor/golang.org/x/crypto/curve25519/internal/field/README
generated
vendored
7
vendor/golang.org/x/crypto/curve25519/internal/field/README
generated
vendored
@ -1,7 +0,0 @@
|
||||
This package is kept in sync with crypto/ed25519/internal/edwards25519/field in
|
||||
the standard library.
|
||||
|
||||
If there are any changes in the standard library that need to be synced to this
|
||||
package, run sync.sh. It will not overwrite any local changes made since the
|
||||
previous sync, so it's ok to land changes in this package first, and then sync
|
||||
to the standard library later.
|
416
vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
generated
vendored
416
vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
generated
vendored
@ -1,416 +0,0 @@
|
||||
// Copyright (c) 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package field implements fast arithmetic modulo 2^255-19.
|
||||
package field
|
||||
|
||||
import (
|
||||
"crypto/subtle"
|
||||
"encoding/binary"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
// Element represents an element of the field GF(2^255-19). Note that this
|
||||
// is not a cryptographically secure group, and should only be used to interact
|
||||
// with edwards25519.Point coordinates.
|
||||
//
|
||||
// This type works similarly to math/big.Int, and all arguments and receivers
|
||||
// are allowed to alias.
|
||||
//
|
||||
// The zero value is a valid zero element.
|
||||
type Element struct {
|
||||
// An element t represents the integer
|
||||
// t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
|
||||
//
|
||||
// Between operations, all limbs are expected to be lower than 2^52.
|
||||
l0 uint64
|
||||
l1 uint64
|
||||
l2 uint64
|
||||
l3 uint64
|
||||
l4 uint64
|
||||
}
|
||||
|
||||
const maskLow51Bits uint64 = (1 << 51) - 1
|
||||
|
||||
var feZero = &Element{0, 0, 0, 0, 0}
|
||||
|
||||
// Zero sets v = 0, and returns v.
|
||||
func (v *Element) Zero() *Element {
|
||||
*v = *feZero
|
||||
return v
|
||||
}
|
||||
|
||||
var feOne = &Element{1, 0, 0, 0, 0}
|
||||
|
||||
// One sets v = 1, and returns v.
|
||||
func (v *Element) One() *Element {
|
||||
*v = *feOne
|
||||
return v
|
||||
}
|
||||
|
||||
// reduce reduces v modulo 2^255 - 19 and returns it.
|
||||
func (v *Element) reduce() *Element {
|
||||
v.carryPropagate()
|
||||
|
||||
// After the light reduction we now have a field element representation
|
||||
// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
|
||||
|
||||
// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
|
||||
// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
|
||||
c := (v.l0 + 19) >> 51
|
||||
c = (v.l1 + c) >> 51
|
||||
c = (v.l2 + c) >> 51
|
||||
c = (v.l3 + c) >> 51
|
||||
c = (v.l4 + c) >> 51
|
||||
|
||||
// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
|
||||
// effectively applying the reduction identity to the carry.
|
||||
v.l0 += 19 * c
|
||||
|
||||
v.l1 += v.l0 >> 51
|
||||
v.l0 = v.l0 & maskLow51Bits
|
||||
v.l2 += v.l1 >> 51
|
||||
v.l1 = v.l1 & maskLow51Bits
|
||||
v.l3 += v.l2 >> 51
|
||||
v.l2 = v.l2 & maskLow51Bits
|
||||
v.l4 += v.l3 >> 51
|
||||
v.l3 = v.l3 & maskLow51Bits
|
||||
// no additional carry
|
||||
v.l4 = v.l4 & maskLow51Bits
|
||||
|
||||
return v
|
||||
}
|
||||
|
||||
// Add sets v = a + b, and returns v.
|
||||
func (v *Element) Add(a, b *Element) *Element {
|
||||
v.l0 = a.l0 + b.l0
|
||||
v.l1 = a.l1 + b.l1
|
||||
v.l2 = a.l2 + b.l2
|
||||
v.l3 = a.l3 + b.l3
|
||||
v.l4 = a.l4 + b.l4
|
||||
// Using the generic implementation here is actually faster than the
|
||||
// assembly. Probably because the body of this function is so simple that
|
||||
// the compiler can figure out better optimizations by inlining the carry
|
||||
// propagation. TODO
|
||||
return v.carryPropagateGeneric()
|
||||
}
|
||||
|
||||
// Subtract sets v = a - b, and returns v.
|
||||
func (v *Element) Subtract(a, b *Element) *Element {
|
||||
// We first add 2 * p, to guarantee the subtraction won't underflow, and
|
||||
// then subtract b (which can be up to 2^255 + 2^13 * 19).
|
||||
v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
|
||||
v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
|
||||
v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
|
||||
v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
|
||||
v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
|
||||
return v.carryPropagate()
|
||||
}
|
||||
|
||||
// Negate sets v = -a, and returns v.
|
||||
func (v *Element) Negate(a *Element) *Element {
|
||||
return v.Subtract(feZero, a)
|
||||
}
|
||||
|
||||
// Invert sets v = 1/z mod p, and returns v.
|
||||
//
|
||||
// If z == 0, Invert returns v = 0.
|
||||
func (v *Element) Invert(z *Element) *Element {
|
||||
// Inversion is implemented as exponentiation with exponent p − 2. It uses the
|
||||
// same sequence of 255 squarings and 11 multiplications as [Curve25519].
|
||||
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
|
||||
|
||||
z2.Square(z) // 2
|
||||
t.Square(&z2) // 4
|
||||
t.Square(&t) // 8
|
||||
z9.Multiply(&t, z) // 9
|
||||
z11.Multiply(&z9, &z2) // 11
|
||||
t.Square(&z11) // 22
|
||||
z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
|
||||
|
||||
t.Square(&z2_5_0) // 2^6 - 2^1
|
||||
for i := 0; i < 4; i++ {
|
||||
t.Square(&t) // 2^10 - 2^5
|
||||
}
|
||||
z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
|
||||
|
||||
t.Square(&z2_10_0) // 2^11 - 2^1
|
||||
for i := 0; i < 9; i++ {
|
||||
t.Square(&t) // 2^20 - 2^10
|
||||
}
|
||||
z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
|
||||
|
||||
t.Square(&z2_20_0) // 2^21 - 2^1
|
||||
for i := 0; i < 19; i++ {
|
||||
t.Square(&t) // 2^40 - 2^20
|
||||
}
|
||||
t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
|
||||
|
||||
t.Square(&t) // 2^41 - 2^1
|
||||
for i := 0; i < 9; i++ {
|
||||
t.Square(&t) // 2^50 - 2^10
|
||||
}
|
||||
z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
|
||||
|
||||
t.Square(&z2_50_0) // 2^51 - 2^1
|
||||
for i := 0; i < 49; i++ {
|
||||
t.Square(&t) // 2^100 - 2^50
|
||||
}
|
||||
z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
|
||||
|
||||
t.Square(&z2_100_0) // 2^101 - 2^1
|
||||
for i := 0; i < 99; i++ {
|
||||
t.Square(&t) // 2^200 - 2^100
|
||||
}
|
||||
t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
|
||||
|
||||
t.Square(&t) // 2^201 - 2^1
|
||||
for i := 0; i < 49; i++ {
|
||||
t.Square(&t) // 2^250 - 2^50
|
||||
}
|
||||
t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
|
||||
|
||||
t.Square(&t) // 2^251 - 2^1
|
||||
t.Square(&t) // 2^252 - 2^2
|
||||
t.Square(&t) // 2^253 - 2^3
|
||||
t.Square(&t) // 2^254 - 2^4
|
||||
t.Square(&t) // 2^255 - 2^5
|
||||
|
||||
return v.Multiply(&t, &z11) // 2^255 - 21
|
||||
}
|
||||
|
||||
// Set sets v = a, and returns v.
|
||||
func (v *Element) Set(a *Element) *Element {
|
||||
*v = *a
|
||||
return v
|
||||
}
|
||||
|
||||
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
|
||||
//
|
||||
// Consistent with RFC 7748, the most significant bit (the high bit of the
|
||||
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
|
||||
// are accepted. Note that this is laxer than specified by RFC 8032.
|
||||
func (v *Element) SetBytes(x []byte) *Element {
|
||||
if len(x) != 32 {
|
||||
panic("edwards25519: invalid field element input size")
|
||||
}
|
||||
|
||||
// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
|
||||
v.l0 = binary.LittleEndian.Uint64(x[0:8])
|
||||
v.l0 &= maskLow51Bits
|
||||
// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
|
||||
v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
|
||||
v.l1 &= maskLow51Bits
|
||||
// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
|
||||
v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
|
||||
v.l2 &= maskLow51Bits
|
||||
// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
|
||||
v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
|
||||
v.l3 &= maskLow51Bits
|
||||
// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
|
||||
// Note: not bytes 25:33, shift 4, to avoid overread.
|
||||
v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
|
||||
v.l4 &= maskLow51Bits
|
||||
|
||||
return v
|
||||
}
|
||||
|
||||
// Bytes returns the canonical 32-byte little-endian encoding of v.
|
||||
func (v *Element) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [32]byte
|
||||
return v.bytes(&out)
|
||||
}
|
||||
|
||||
func (v *Element) bytes(out *[32]byte) []byte {
|
||||
t := *v
|
||||
t.reduce()
|
||||
|
||||
var buf [8]byte
|
||||
for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
|
||||
bitsOffset := i * 51
|
||||
binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
|
||||
for i, bb := range buf {
|
||||
off := bitsOffset/8 + i
|
||||
if off >= len(out) {
|
||||
break
|
||||
}
|
||||
out[off] |= bb
|
||||
}
|
||||
}
|
||||
|
||||
return out[:]
|
||||
}
|
||||
|
||||
// Equal returns 1 if v and u are equal, and 0 otherwise.
|
||||
func (v *Element) Equal(u *Element) int {
|
||||
sa, sv := u.Bytes(), v.Bytes()
|
||||
return subtle.ConstantTimeCompare(sa, sv)
|
||||
}
|
||||
|
||||
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
|
||||
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
|
||||
|
||||
// Select sets v to a if cond == 1, and to b if cond == 0.
|
||||
func (v *Element) Select(a, b *Element, cond int) *Element {
|
||||
m := mask64Bits(cond)
|
||||
v.l0 = (m & a.l0) | (^m & b.l0)
|
||||
v.l1 = (m & a.l1) | (^m & b.l1)
|
||||
v.l2 = (m & a.l2) | (^m & b.l2)
|
||||
v.l3 = (m & a.l3) | (^m & b.l3)
|
||||
v.l4 = (m & a.l4) | (^m & b.l4)
|
||||
return v
|
||||
}
|
||||
|
||||
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
|
||||
func (v *Element) Swap(u *Element, cond int) {
|
||||
m := mask64Bits(cond)
|
||||
t := m & (v.l0 ^ u.l0)
|
||||
v.l0 ^= t
|
||||
u.l0 ^= t
|
||||
t = m & (v.l1 ^ u.l1)
|
||||
v.l1 ^= t
|
||||
u.l1 ^= t
|
||||
t = m & (v.l2 ^ u.l2)
|
||||
v.l2 ^= t
|
||||
u.l2 ^= t
|
||||
t = m & (v.l3 ^ u.l3)
|
||||
v.l3 ^= t
|
||||
u.l3 ^= t
|
||||
t = m & (v.l4 ^ u.l4)
|
||||
v.l4 ^= t
|
||||
u.l4 ^= t
|
||||
}
|
||||
|
||||
// IsNegative returns 1 if v is negative, and 0 otherwise.
|
||||
func (v *Element) IsNegative() int {
|
||||
return int(v.Bytes()[0] & 1)
|
||||
}
|
||||
|
||||
// Absolute sets v to |u|, and returns v.
|
||||
func (v *Element) Absolute(u *Element) *Element {
|
||||
return v.Select(new(Element).Negate(u), u, u.IsNegative())
|
||||
}
|
||||
|
||||
// Multiply sets v = x * y, and returns v.
|
||||
func (v *Element) Multiply(x, y *Element) *Element {
|
||||
feMul(v, x, y)
|
||||
return v
|
||||
}
|
||||
|
||||
// Square sets v = x * x, and returns v.
|
||||
func (v *Element) Square(x *Element) *Element {
|
||||
feSquare(v, x)
|
||||
return v
|
||||
}
|
||||
|
||||
// Mult32 sets v = x * y, and returns v.
|
||||
func (v *Element) Mult32(x *Element, y uint32) *Element {
|
||||
x0lo, x0hi := mul51(x.l0, y)
|
||||
x1lo, x1hi := mul51(x.l1, y)
|
||||
x2lo, x2hi := mul51(x.l2, y)
|
||||
x3lo, x3hi := mul51(x.l3, y)
|
||||
x4lo, x4hi := mul51(x.l4, y)
|
||||
v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
|
||||
v.l1 = x1lo + x0hi
|
||||
v.l2 = x2lo + x1hi
|
||||
v.l3 = x3lo + x2hi
|
||||
v.l4 = x4lo + x3hi
|
||||
// The hi portions are going to be only 32 bits, plus any previous excess,
|
||||
// so we can skip the carry propagation.
|
||||
return v
|
||||
}
|
||||
|
||||
// mul51 returns lo + hi * 2⁵¹ = a * b.
|
||||
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
|
||||
mh, ml := bits.Mul64(a, uint64(b))
|
||||
lo = ml & maskLow51Bits
|
||||
hi = (mh << 13) | (ml >> 51)
|
||||
return
|
||||
}
|
||||
|
||||
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
|
||||
func (v *Element) Pow22523(x *Element) *Element {
|
||||
var t0, t1, t2 Element
|
||||
|
||||
t0.Square(x) // x^2
|
||||
t1.Square(&t0) // x^4
|
||||
t1.Square(&t1) // x^8
|
||||
t1.Multiply(x, &t1) // x^9
|
||||
t0.Multiply(&t0, &t1) // x^11
|
||||
t0.Square(&t0) // x^22
|
||||
t0.Multiply(&t1, &t0) // x^31
|
||||
t1.Square(&t0) // x^62
|
||||
for i := 1; i < 5; i++ { // x^992
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
|
||||
t1.Square(&t0) // 2^11 - 2
|
||||
for i := 1; i < 10; i++ { // 2^20 - 2^10
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t1.Multiply(&t1, &t0) // 2^20 - 1
|
||||
t2.Square(&t1) // 2^21 - 2
|
||||
for i := 1; i < 20; i++ { // 2^40 - 2^20
|
||||
t2.Square(&t2)
|
||||
}
|
||||
t1.Multiply(&t2, &t1) // 2^40 - 1
|
||||
t1.Square(&t1) // 2^41 - 2
|
||||
for i := 1; i < 10; i++ { // 2^50 - 2^10
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // 2^50 - 1
|
||||
t1.Square(&t0) // 2^51 - 2
|
||||
for i := 1; i < 50; i++ { // 2^100 - 2^50
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t1.Multiply(&t1, &t0) // 2^100 - 1
|
||||
t2.Square(&t1) // 2^101 - 2
|
||||
for i := 1; i < 100; i++ { // 2^200 - 2^100
|
||||
t2.Square(&t2)
|
||||
}
|
||||
t1.Multiply(&t2, &t1) // 2^200 - 1
|
||||
t1.Square(&t1) // 2^201 - 2
|
||||
for i := 1; i < 50; i++ { // 2^250 - 2^50
|
||||
t1.Square(&t1)
|
||||
}
|
||||
t0.Multiply(&t1, &t0) // 2^250 - 1
|
||||
t0.Square(&t0) // 2^251 - 2
|
||||
t0.Square(&t0) // 2^252 - 4
|
||||
return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
|
||||
}
|
||||
|
||||
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
|
||||
var sqrtM1 = &Element{1718705420411056, 234908883556509,
|
||||
2233514472574048, 2117202627021982, 765476049583133}
|
||||
|
||||
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
|
||||
//
|
||||
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
|
||||
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
|
||||
// and returns r and 0.
|
||||
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
|
||||
var a, b Element
|
||||
|
||||
// r = (u * v3) * (u * v7)^((p-5)/8)
|
||||
v2 := a.Square(v)
|
||||
uv3 := b.Multiply(u, b.Multiply(v2, v))
|
||||
uv7 := a.Multiply(uv3, a.Square(v2))
|
||||
r.Multiply(uv3, r.Pow22523(uv7))
|
||||
|
||||
check := a.Multiply(v, a.Square(r)) // check = v * r^2
|
||||
|
||||
uNeg := b.Negate(u)
|
||||
correctSignSqrt := check.Equal(u)
|
||||
flippedSignSqrt := check.Equal(uNeg)
|
||||
flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
|
||||
|
||||
rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
|
||||
// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
|
||||
r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
|
||||
|
||||
r.Absolute(r) // Choose the nonnegative square root.
|
||||
return r, correctSignSqrt | flippedSignSqrt
|
||||
}
|
15
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
generated
vendored
15
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
generated
vendored
@ -1,15 +0,0 @@
|
||||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
|
||||
|
||||
//go:build amd64 && gc && !purego
|
||||
|
||||
package field
|
||||
|
||||
// feMul sets out = a * b. It works like feMulGeneric.
|
||||
//
|
||||
//go:noescape
|
||||
func feMul(out *Element, a *Element, b *Element)
|
||||
|
||||
// feSquare sets out = a * a. It works like feSquareGeneric.
|
||||
//
|
||||
//go:noescape
|
||||
func feSquare(out *Element, a *Element)
|
378
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
generated
vendored
378
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
generated
vendored
@ -1,378 +0,0 @@
|
||||
// Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT.
|
||||
|
||||
//go:build amd64 && gc && !purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// func feMul(out *Element, a *Element, b *Element)
|
||||
TEXT ·feMul(SB), NOSPLIT, $0-24
|
||||
MOVQ a+8(FP), CX
|
||||
MOVQ b+16(FP), BX
|
||||
|
||||
// r0 = a0×b0
|
||||
MOVQ (CX), AX
|
||||
MULQ (BX)
|
||||
MOVQ AX, DI
|
||||
MOVQ DX, SI
|
||||
|
||||
// r0 += 19×a1×b4
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a2×b3
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a3×b2
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r0 += 19×a4×b1
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, DI
|
||||
ADCQ DX, SI
|
||||
|
||||
// r1 = a0×b1
|
||||
MOVQ (CX), AX
|
||||
MULQ 8(BX)
|
||||
MOVQ AX, R9
|
||||
MOVQ DX, R8
|
||||
|
||||
// r1 += a1×b0
|
||||
MOVQ 8(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a2×b4
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a3×b3
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r1 += 19×a4×b2
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R9
|
||||
ADCQ DX, R8
|
||||
|
||||
// r2 = a0×b2
|
||||
MOVQ (CX), AX
|
||||
MULQ 16(BX)
|
||||
MOVQ AX, R11
|
||||
MOVQ DX, R10
|
||||
|
||||
// r2 += a1×b1
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += a2×b0
|
||||
MOVQ 16(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += 19×a3×b4
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r2 += 19×a4×b3
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R11
|
||||
ADCQ DX, R10
|
||||
|
||||
// r3 = a0×b3
|
||||
MOVQ (CX), AX
|
||||
MULQ 24(BX)
|
||||
MOVQ AX, R13
|
||||
MOVQ DX, R12
|
||||
|
||||
// r3 += a1×b2
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += a2×b1
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += a3×b0
|
||||
MOVQ 24(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r3 += 19×a4×b4
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(BX)
|
||||
ADDQ AX, R13
|
||||
ADCQ DX, R12
|
||||
|
||||
// r4 = a0×b4
|
||||
MOVQ (CX), AX
|
||||
MULQ 32(BX)
|
||||
MOVQ AX, R15
|
||||
MOVQ DX, R14
|
||||
|
||||
// r4 += a1×b3
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 24(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a2×b2
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 16(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a3×b1
|
||||
MOVQ 24(CX), AX
|
||||
MULQ 8(BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// r4 += a4×b0
|
||||
MOVQ 32(CX), AX
|
||||
MULQ (BX)
|
||||
ADDQ AX, R15
|
||||
ADCQ DX, R14
|
||||
|
||||
// First reduction chain
|
||||
MOVQ $0x0007ffffffffffff, AX
|
||||
SHLQ $0x0d, DI, SI
|
||||
SHLQ $0x0d, R9, R8
|
||||
SHLQ $0x0d, R11, R10
|
||||
SHLQ $0x0d, R13, R12
|
||||
SHLQ $0x0d, R15, R14
|
||||
ANDQ AX, DI
|
||||
IMUL3Q $0x13, R14, R14
|
||||
ADDQ R14, DI
|
||||
ANDQ AX, R9
|
||||
ADDQ SI, R9
|
||||
ANDQ AX, R11
|
||||
ADDQ R8, R11
|
||||
ANDQ AX, R13
|
||||
ADDQ R10, R13
|
||||
ANDQ AX, R15
|
||||
ADDQ R12, R15
|
||||
|
||||
// Second reduction chain (carryPropagate)
|
||||
MOVQ DI, SI
|
||||
SHRQ $0x33, SI
|
||||
MOVQ R9, R8
|
||||
SHRQ $0x33, R8
|
||||
MOVQ R11, R10
|
||||
SHRQ $0x33, R10
|
||||
MOVQ R13, R12
|
||||
SHRQ $0x33, R12
|
||||
MOVQ R15, R14
|
||||
SHRQ $0x33, R14
|
||||
ANDQ AX, DI
|
||||
IMUL3Q $0x13, R14, R14
|
||||
ADDQ R14, DI
|
||||
ANDQ AX, R9
|
||||
ADDQ SI, R9
|
||||
ANDQ AX, R11
|
||||
ADDQ R8, R11
|
||||
ANDQ AX, R13
|
||||
ADDQ R10, R13
|
||||
ANDQ AX, R15
|
||||
ADDQ R12, R15
|
||||
|
||||
// Store output
|
||||
MOVQ out+0(FP), AX
|
||||
MOVQ DI, (AX)
|
||||
MOVQ R9, 8(AX)
|
||||
MOVQ R11, 16(AX)
|
||||
MOVQ R13, 24(AX)
|
||||
MOVQ R15, 32(AX)
|
||||
RET
|
||||
|
||||
// func feSquare(out *Element, a *Element)
|
||||
TEXT ·feSquare(SB), NOSPLIT, $0-16
|
||||
MOVQ a+8(FP), CX
|
||||
|
||||
// r0 = l0×l0
|
||||
MOVQ (CX), AX
|
||||
MULQ (CX)
|
||||
MOVQ AX, SI
|
||||
MOVQ DX, BX
|
||||
|
||||
// r0 += 38×l1×l4
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, SI
|
||||
ADCQ DX, BX
|
||||
|
||||
// r0 += 38×l2×l3
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, SI
|
||||
ADCQ DX, BX
|
||||
|
||||
// r1 = 2×l0×l1
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 8(CX)
|
||||
MOVQ AX, R8
|
||||
MOVQ DX, DI
|
||||
|
||||
// r1 += 38×l2×l4
|
||||
MOVQ 16(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R8
|
||||
ADCQ DX, DI
|
||||
|
||||
// r1 += 19×l3×l3
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, R8
|
||||
ADCQ DX, DI
|
||||
|
||||
// r2 = 2×l0×l2
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 16(CX)
|
||||
MOVQ AX, R10
|
||||
MOVQ DX, R9
|
||||
|
||||
// r2 += l1×l1
|
||||
MOVQ 8(CX), AX
|
||||
MULQ 8(CX)
|
||||
ADDQ AX, R10
|
||||
ADCQ DX, R9
|
||||
|
||||
// r2 += 38×l3×l4
|
||||
MOVQ 24(CX), AX
|
||||
IMUL3Q $0x26, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R10
|
||||
ADCQ DX, R9
|
||||
|
||||
// r3 = 2×l0×l3
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 24(CX)
|
||||
MOVQ AX, R12
|
||||
MOVQ DX, R11
|
||||
|
||||
// r3 += 2×l1×l2
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x02, AX, AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX, R12
|
||||
ADCQ DX, R11
|
||||
|
||||
// r3 += 19×l4×l4
|
||||
MOVQ 32(CX), AX
|
||||
IMUL3Q $0x13, AX, AX
|
||||
MULQ 32(CX)
|
||||
ADDQ AX, R12
|
||||
ADCQ DX, R11
|
||||
|
||||
// r4 = 2×l0×l4
|
||||
MOVQ (CX), AX
|
||||
SHLQ $0x01, AX
|
||||
MULQ 32(CX)
|
||||
MOVQ AX, R14
|
||||
MOVQ DX, R13
|
||||
|
||||
// r4 += 2×l1×l3
|
||||
MOVQ 8(CX), AX
|
||||
IMUL3Q $0x02, AX, AX
|
||||
MULQ 24(CX)
|
||||
ADDQ AX, R14
|
||||
ADCQ DX, R13
|
||||
|
||||
// r4 += l2×l2
|
||||
MOVQ 16(CX), AX
|
||||
MULQ 16(CX)
|
||||
ADDQ AX, R14
|
||||
ADCQ DX, R13
|
||||
|
||||
// First reduction chain
|
||||
MOVQ $0x0007ffffffffffff, AX
|
||||
SHLQ $0x0d, SI, BX
|
||||
SHLQ $0x0d, R8, DI
|
||||
SHLQ $0x0d, R10, R9
|
||||
SHLQ $0x0d, R12, R11
|
||||
SHLQ $0x0d, R14, R13
|
||||
ANDQ AX, SI
|
||||
IMUL3Q $0x13, R13, R13
|
||||
ADDQ R13, SI
|
||||
ANDQ AX, R8
|
||||
ADDQ BX, R8
|
||||
ANDQ AX, R10
|
||||
ADDQ DI, R10
|
||||
ANDQ AX, R12
|
||||
ADDQ R9, R12
|
||||
ANDQ AX, R14
|
||||
ADDQ R11, R14
|
||||
|
||||
// Second reduction chain (carryPropagate)
|
||||
MOVQ SI, BX
|
||||
SHRQ $0x33, BX
|
||||
MOVQ R8, DI
|
||||
SHRQ $0x33, DI
|
||||
MOVQ R10, R9
|
||||
SHRQ $0x33, R9
|
||||
MOVQ R12, R11
|
||||
SHRQ $0x33, R11
|
||||
MOVQ R14, R13
|
||||
SHRQ $0x33, R13
|
||||
ANDQ AX, SI
|
||||
IMUL3Q $0x13, R13, R13
|
||||
ADDQ R13, SI
|
||||
ANDQ AX, R8
|
||||
ADDQ BX, R8
|
||||
ANDQ AX, R10
|
||||
ADDQ DI, R10
|
||||
ANDQ AX, R12
|
||||
ADDQ R9, R12
|
||||
ANDQ AX, R14
|
||||
ADDQ R11, R14
|
||||
|
||||
// Store output
|
||||
MOVQ out+0(FP), AX
|
||||
MOVQ SI, (AX)
|
||||
MOVQ R8, 8(AX)
|
||||
MOVQ R10, 16(AX)
|
||||
MOVQ R12, 24(AX)
|
||||
MOVQ R14, 32(AX)
|
||||
RET
|
11
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
generated
vendored
11
vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
generated
vendored
@ -1,11 +0,0 @@
|
||||
// Copyright (c) 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !amd64 || !gc || purego
|
||||
|
||||
package field
|
||||
|
||||
func feMul(v, x, y *Element) { feMulGeneric(v, x, y) }
|
||||
|
||||
func feSquare(v, x *Element) { feSquareGeneric(v, x) }
|
15
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
generated
vendored
15
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
generated
vendored
@ -1,15 +0,0 @@
|
||||
// Copyright (c) 2020 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build arm64 && gc && !purego
|
||||
|
||||
package field
|
||||
|
||||
//go:noescape
|
||||
func carryPropagate(v *Element)
|
||||
|
||||
func (v *Element) carryPropagate() *Element {
|
||||
carryPropagate(v)
|
||||
return v
|
||||
}
|
42
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
generated
vendored
42
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
generated
vendored
@ -1,42 +0,0 @@
|
||||
// Copyright (c) 2020 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build arm64 && gc && !purego
|
||||
|
||||
#include "textflag.h"
|
||||
|
||||
// carryPropagate works exactly like carryPropagateGeneric and uses the
|
||||
// same AND, ADD, and LSR+MADD instructions emitted by the compiler, but
|
||||
// avoids loading R0-R4 twice and uses LDP and STP.
|
||||
//
|
||||
// See https://golang.org/issues/43145 for the main compiler issue.
|
||||
//
|
||||
// func carryPropagate(v *Element)
|
||||
TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8
|
||||
MOVD v+0(FP), R20
|
||||
|
||||
LDP 0(R20), (R0, R1)
|
||||
LDP 16(R20), (R2, R3)
|
||||
MOVD 32(R20), R4
|
||||
|
||||
AND $0x7ffffffffffff, R0, R10
|
||||
AND $0x7ffffffffffff, R1, R11
|
||||
AND $0x7ffffffffffff, R2, R12
|
||||
AND $0x7ffffffffffff, R3, R13
|
||||
AND $0x7ffffffffffff, R4, R14
|
||||
|
||||
ADD R0>>51, R11, R11
|
||||
ADD R1>>51, R12, R12
|
||||
ADD R2>>51, R13, R13
|
||||
ADD R3>>51, R14, R14
|
||||
// R4>>51 * 19 + R10 -> R10
|
||||
LSR $51, R4, R21
|
||||
MOVD $19, R22
|
||||
MADD R22, R10, R21, R10
|
||||
|
||||
STP (R10, R11), 0(R20)
|
||||
STP (R12, R13), 16(R20)
|
||||
MOVD R14, 32(R20)
|
||||
|
||||
RET
|
11
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
generated
vendored
11
vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
generated
vendored
@ -1,11 +0,0 @@
|
||||
// Copyright (c) 2021 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
//go:build !arm64 || !gc || purego
|
||||
|
||||
package field
|
||||
|
||||
func (v *Element) carryPropagate() *Element {
|
||||
return v.carryPropagateGeneric()
|
||||
}
|
264
vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
generated
vendored
264
vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
generated
vendored
@ -1,264 +0,0 @@
|
||||
// Copyright (c) 2017 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package field
|
||||
|
||||
import "math/bits"
|
||||
|
||||
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
|
||||
// bits.Mul64 and bits.Add64 intrinsics.
|
||||
type uint128 struct {
|
||||
lo, hi uint64
|
||||
}
|
||||
|
||||
// mul64 returns a * b.
|
||||
func mul64(a, b uint64) uint128 {
|
||||
hi, lo := bits.Mul64(a, b)
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
// addMul64 returns v + a * b.
|
||||
func addMul64(v uint128, a, b uint64) uint128 {
|
||||
hi, lo := bits.Mul64(a, b)
|
||||
lo, c := bits.Add64(lo, v.lo, 0)
|
||||
hi, _ = bits.Add64(hi, v.hi, c)
|
||||
return uint128{lo, hi}
|
||||
}
|
||||
|
||||
// shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits.
|
||||
func shiftRightBy51(a uint128) uint64 {
|
||||
return (a.hi << (64 - 51)) | (a.lo >> 51)
|
||||
}
|
||||
|
||||
func feMulGeneric(v, a, b *Element) {
|
||||
a0 := a.l0
|
||||
a1 := a.l1
|
||||
a2 := a.l2
|
||||
a3 := a.l3
|
||||
a4 := a.l4
|
||||
|
||||
b0 := b.l0
|
||||
b1 := b.l1
|
||||
b2 := b.l2
|
||||
b3 := b.l3
|
||||
b4 := b.l4
|
||||
|
||||
// Limb multiplication works like pen-and-paper columnar multiplication, but
|
||||
// with 51-bit limbs instead of digits.
|
||||
//
|
||||
// a4 a3 a2 a1 a0 x
|
||||
// b4 b3 b2 b1 b0 =
|
||||
// ------------------------
|
||||
// a4b0 a3b0 a2b0 a1b0 a0b0 +
|
||||
// a4b1 a3b1 a2b1 a1b1 a0b1 +
|
||||
// a4b2 a3b2 a2b2 a1b2 a0b2 +
|
||||
// a4b3 a3b3 a2b3 a1b3 a0b3 +
|
||||
// a4b4 a3b4 a2b4 a1b4 a0b4 =
|
||||
// ----------------------------------------------
|
||||
// r8 r7 r6 r5 r4 r3 r2 r1 r0
|
||||
//
|
||||
// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to
|
||||
// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5,
|
||||
// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc.
|
||||
//
|
||||
// Reduction can be carried out simultaneously to multiplication. For
|
||||
// example, we do not compute r5: whenever the result of a multiplication
|
||||
// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0.
|
||||
//
|
||||
// a4b0 a3b0 a2b0 a1b0 a0b0 +
|
||||
// a3b1 a2b1 a1b1 a0b1 19×a4b1 +
|
||||
// a2b2 a1b2 a0b2 19×a4b2 19×a3b2 +
|
||||
// a1b3 a0b3 19×a4b3 19×a3b3 19×a2b3 +
|
||||
// a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4 =
|
||||
// --------------------------------------
|
||||
// r4 r3 r2 r1 r0
|
||||
//
|
||||
// Finally we add up the columns into wide, overlapping limbs.
|
||||
|
||||
a1_19 := a1 * 19
|
||||
a2_19 := a2 * 19
|
||||
a3_19 := a3 * 19
|
||||
a4_19 := a4 * 19
|
||||
|
||||
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
|
||||
r0 := mul64(a0, b0)
|
||||
r0 = addMul64(r0, a1_19, b4)
|
||||
r0 = addMul64(r0, a2_19, b3)
|
||||
r0 = addMul64(r0, a3_19, b2)
|
||||
r0 = addMul64(r0, a4_19, b1)
|
||||
|
||||
// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2)
|
||||
r1 := mul64(a0, b1)
|
||||
r1 = addMul64(r1, a1, b0)
|
||||
r1 = addMul64(r1, a2_19, b4)
|
||||
r1 = addMul64(r1, a3_19, b3)
|
||||
r1 = addMul64(r1, a4_19, b2)
|
||||
|
||||
// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3)
|
||||
r2 := mul64(a0, b2)
|
||||
r2 = addMul64(r2, a1, b1)
|
||||
r2 = addMul64(r2, a2, b0)
|
||||
r2 = addMul64(r2, a3_19, b4)
|
||||
r2 = addMul64(r2, a4_19, b3)
|
||||
|
||||
// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4
|
||||
r3 := mul64(a0, b3)
|
||||
r3 = addMul64(r3, a1, b2)
|
||||
r3 = addMul64(r3, a2, b1)
|
||||
r3 = addMul64(r3, a3, b0)
|
||||
r3 = addMul64(r3, a4_19, b4)
|
||||
|
||||
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
|
||||
r4 := mul64(a0, b4)
|
||||
r4 = addMul64(r4, a1, b3)
|
||||
r4 = addMul64(r4, a2, b2)
|
||||
r4 = addMul64(r4, a3, b1)
|
||||
r4 = addMul64(r4, a4, b0)
|
||||
|
||||
// After the multiplication, we need to reduce (carry) the five coefficients
|
||||
// to obtain a result with limbs that are at most slightly larger than 2⁵¹,
|
||||
// to respect the Element invariant.
|
||||
//
|
||||
// Overall, the reduction works the same as carryPropagate, except with
|
||||
// wider inputs: we take the carry for each coefficient by shifting it right
|
||||
// by 51, and add it to the limb above it. The top carry is multiplied by 19
|
||||
// according to the reduction identity and added to the lowest limb.
|
||||
//
|
||||
// The largest coefficient (r0) will be at most 111 bits, which guarantees
|
||||
// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64.
|
||||
//
|
||||
// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1)
|
||||
// r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²)
|
||||
// r0 < (1 + 19 × 4) × 2⁵² × 2⁵²
|
||||
// r0 < 2⁷ × 2⁵² × 2⁵²
|
||||
// r0 < 2¹¹¹
|
||||
//
|
||||
// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most
|
||||
// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and
|
||||
// allows us to easily apply the reduction identity.
|
||||
//
|
||||
// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0
|
||||
// r4 < 5 × 2⁵² × 2⁵²
|
||||
// r4 < 2¹⁰⁷
|
||||
//
|
||||
|
||||
c0 := shiftRightBy51(r0)
|
||||
c1 := shiftRightBy51(r1)
|
||||
c2 := shiftRightBy51(r2)
|
||||
c3 := shiftRightBy51(r3)
|
||||
c4 := shiftRightBy51(r4)
|
||||
|
||||
rr0 := r0.lo&maskLow51Bits + c4*19
|
||||
rr1 := r1.lo&maskLow51Bits + c0
|
||||
rr2 := r2.lo&maskLow51Bits + c1
|
||||
rr3 := r3.lo&maskLow51Bits + c2
|
||||
rr4 := r4.lo&maskLow51Bits + c3
|
||||
|
||||
// Now all coefficients fit into 64-bit registers but are still too large to
|
||||
// be passed around as a Element. We therefore do one last carry chain,
|
||||
// where the carries will be small enough to fit in the wiggle room above 2⁵¹.
|
||||
*v = Element{rr0, rr1, rr2, rr3, rr4}
|
||||
v.carryPropagate()
|
||||
}
|
||||
|
||||
func feSquareGeneric(v, a *Element) {
|
||||
l0 := a.l0
|
||||
l1 := a.l1
|
||||
l2 := a.l2
|
||||
l3 := a.l3
|
||||
l4 := a.l4
|
||||
|
||||
// Squaring works precisely like multiplication above, but thanks to its
|
||||
// symmetry we get to group a few terms together.
|
||||
//
|
||||
// l4 l3 l2 l1 l0 x
|
||||
// l4 l3 l2 l1 l0 =
|
||||
// ------------------------
|
||||
// l4l0 l3l0 l2l0 l1l0 l0l0 +
|
||||
// l4l1 l3l1 l2l1 l1l1 l0l1 +
|
||||
// l4l2 l3l2 l2l2 l1l2 l0l2 +
|
||||
// l4l3 l3l3 l2l3 l1l3 l0l3 +
|
||||
// l4l4 l3l4 l2l4 l1l4 l0l4 =
|
||||
// ----------------------------------------------
|
||||
// r8 r7 r6 r5 r4 r3 r2 r1 r0
|
||||
//
|
||||
// l4l0 l3l0 l2l0 l1l0 l0l0 +
|
||||
// l3l1 l2l1 l1l1 l0l1 19×l4l1 +
|
||||
// l2l2 l1l2 l0l2 19×l4l2 19×l3l2 +
|
||||
// l1l3 l0l3 19×l4l3 19×l3l3 19×l2l3 +
|
||||
// l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4 =
|
||||
// --------------------------------------
|
||||
// r4 r3 r2 r1 r0
|
||||
//
|
||||
// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with
|
||||
// only three Mul64 and four Add64, instead of five and eight.
|
||||
|
||||
l0_2 := l0 * 2
|
||||
l1_2 := l1 * 2
|
||||
|
||||
l1_38 := l1 * 38
|
||||
l2_38 := l2 * 38
|
||||
l3_38 := l3 * 38
|
||||
|
||||
l3_19 := l3 * 19
|
||||
l4_19 := l4 * 19
|
||||
|
||||
// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3)
|
||||
r0 := mul64(l0, l0)
|
||||
r0 = addMul64(r0, l1_38, l4)
|
||||
r0 = addMul64(r0, l2_38, l3)
|
||||
|
||||
// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3
|
||||
r1 := mul64(l0_2, l1)
|
||||
r1 = addMul64(r1, l2_38, l4)
|
||||
r1 = addMul64(r1, l3_19, l3)
|
||||
|
||||
// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4
|
||||
r2 := mul64(l0_2, l2)
|
||||
r2 = addMul64(r2, l1, l1)
|
||||
r2 = addMul64(r2, l3_38, l4)
|
||||
|
||||
// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4
|
||||
r3 := mul64(l0_2, l3)
|
||||
r3 = addMul64(r3, l1_2, l2)
|
||||
r3 = addMul64(r3, l4_19, l4)
|
||||
|
||||
// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2
|
||||
r4 := mul64(l0_2, l4)
|
||||
r4 = addMul64(r4, l1_2, l3)
|
||||
r4 = addMul64(r4, l2, l2)
|
||||
|
||||
c0 := shiftRightBy51(r0)
|
||||
c1 := shiftRightBy51(r1)
|
||||
c2 := shiftRightBy51(r2)
|
||||
c3 := shiftRightBy51(r3)
|
||||
c4 := shiftRightBy51(r4)
|
||||
|
||||
rr0 := r0.lo&maskLow51Bits + c4*19
|
||||
rr1 := r1.lo&maskLow51Bits + c0
|
||||
rr2 := r2.lo&maskLow51Bits + c1
|
||||
rr3 := r3.lo&maskLow51Bits + c2
|
||||
rr4 := r4.lo&maskLow51Bits + c3
|
||||
|
||||
*v = Element{rr0, rr1, rr2, rr3, rr4}
|
||||
v.carryPropagate()
|
||||
}
|
||||
|
||||
// carryPropagateGeneric brings the limbs below 52 bits by applying the reduction
|
||||
// identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. TODO inline
|
||||
func (v *Element) carryPropagateGeneric() *Element {
|
||||
c0 := v.l0 >> 51
|
||||
c1 := v.l1 >> 51
|
||||
c2 := v.l2 >> 51
|
||||
c3 := v.l3 >> 51
|
||||
c4 := v.l4 >> 51
|
||||
|
||||
v.l0 = v.l0&maskLow51Bits + c4*19
|
||||
v.l1 = v.l1&maskLow51Bits + c0
|
||||
v.l2 = v.l2&maskLow51Bits + c1
|
||||
v.l3 = v.l3&maskLow51Bits + c2
|
||||
v.l4 = v.l4&maskLow51Bits + c3
|
||||
|
||||
return v
|
||||
}
|
1
vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
generated
vendored
1
vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
generated
vendored
@ -1 +0,0 @@
|
||||
b0c49ae9f59d233526f8934262c5bbbe14d4358d
|
19
vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
generated
vendored
19
vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
generated
vendored
@ -1,19 +0,0 @@
|
||||
#! /bin/bash
|
||||
set -euo pipefail
|
||||
|
||||
cd "$(git rev-parse --show-toplevel)"
|
||||
|
||||
STD_PATH=src/crypto/ed25519/internal/edwards25519/field
|
||||
LOCAL_PATH=curve25519/internal/field
|
||||
LAST_SYNC_REF=$(cat $LOCAL_PATH/sync.checkpoint)
|
||||
|
||||
git fetch https://go.googlesource.com/go master
|
||||
|
||||
if git diff --quiet $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH; then
|
||||
echo "No changes."
|
||||
else
|
||||
NEW_REF=$(git rev-parse FETCH_HEAD | tee $LOCAL_PATH/sync.checkpoint)
|
||||
echo "Applying changes from $LAST_SYNC_REF to $NEW_REF..."
|
||||
git diff $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH | \
|
||||
git apply -3 --directory=$LOCAL_PATH
|
||||
fi
|
Reference in New Issue
Block a user