protobuf: remove gogoproto

Removes gogo/protobuf from buildx and updates to a version of
moby/buildkit where gogo is removed.

This also changes how the proto files are generated. This is because
newer versions of protobuf are more strict about name conflicts. If two
files have the same name (even if they are relative paths) and are used
in different protoc commands, they'll conflict in the registry.

Since protobuf file generation doesn't work very well with
`paths=source_relative`, this removes the `go:generate` expression and
just relies on the dockerfile to perform the generation.

Signed-off-by: Jonathan A. Sternberg <jonathan.sternberg@docker.com>
This commit is contained in:
Jonathan A. Sternberg
2024-10-02 15:51:59 -05:00
parent 8e47387d02
commit b35a0f4718
592 changed files with 46288 additions and 110420 deletions

View File

@ -32,6 +32,7 @@ import (
"golang.org/x/net/http2/hpack"
"google.golang.org/grpc/internal/grpclog"
"google.golang.org/grpc/internal/grpcutil"
"google.golang.org/grpc/mem"
"google.golang.org/grpc/status"
)
@ -148,9 +149,9 @@ type dataFrame struct {
streamID uint32
endStream bool
h []byte
d []byte
reader mem.Reader
// onEachWrite is called every time
// a part of d is written out.
// a part of data is written out.
onEachWrite func()
}
@ -193,7 +194,7 @@ type goAway struct {
code http2.ErrCode
debugData []byte
headsUp bool
closeConn error // if set, loopyWriter will exit, resulting in conn closure
closeConn error // if set, loopyWriter will exit with this error
}
func (*goAway) isTransportResponseFrame() bool { return false }
@ -289,18 +290,22 @@ func (l *outStreamList) dequeue() *outStream {
}
// controlBuffer is a way to pass information to loopy.
// Information is passed as specific struct types called control frames.
// A control frame not only represents data, messages or headers to be sent out
// but can also be used to instruct loopy to update its internal state.
// It shouldn't be confused with an HTTP2 frame, although some of the control frames
// like dataFrame and headerFrame do go out on wire as HTTP2 frames.
//
// Information is passed as specific struct types called control frames. A
// control frame not only represents data, messages or headers to be sent out
// but can also be used to instruct loopy to update its internal state. It
// shouldn't be confused with an HTTP2 frame, although some of the control
// frames like dataFrame and headerFrame do go out on wire as HTTP2 frames.
type controlBuffer struct {
ch chan struct{}
done <-chan struct{}
wakeupCh chan struct{} // Unblocks readers waiting for something to read.
done <-chan struct{} // Closed when the transport is done.
// Mutex guards all the fields below, except trfChan which can be read
// atomically without holding mu.
mu sync.Mutex
consumerWaiting bool
list *itemList
err error
consumerWaiting bool // True when readers are blocked waiting for new data.
closed bool // True when the controlbuf is finished.
list *itemList // List of queued control frames.
// transportResponseFrames counts the number of queued items that represent
// the response of an action initiated by the peer. trfChan is created
@ -308,47 +313,59 @@ type controlBuffer struct {
// closed and nilled when transportResponseFrames drops below the
// threshold. Both fields are protected by mu.
transportResponseFrames int
trfChan atomic.Value // chan struct{}
trfChan atomic.Pointer[chan struct{}]
}
func newControlBuffer(done <-chan struct{}) *controlBuffer {
return &controlBuffer{
ch: make(chan struct{}, 1),
list: &itemList{},
done: done,
wakeupCh: make(chan struct{}, 1),
list: &itemList{},
done: done,
}
}
// throttle blocks if there are too many incomingSettings/cleanupStreams in the
// controlbuf.
// throttle blocks if there are too many frames in the control buf that
// represent the response of an action initiated by the peer, like
// incomingSettings cleanupStreams etc.
func (c *controlBuffer) throttle() {
ch, _ := c.trfChan.Load().(chan struct{})
if ch != nil {
if ch := c.trfChan.Load(); ch != nil {
select {
case <-ch:
case <-(*ch):
case <-c.done:
}
}
}
// put adds an item to the controlbuf.
func (c *controlBuffer) put(it cbItem) error {
_, err := c.executeAndPut(nil, it)
return err
}
func (c *controlBuffer) executeAndPut(f func(it any) bool, it cbItem) (bool, error) {
var wakeUp bool
// executeAndPut runs f, and if the return value is true, adds the given item to
// the controlbuf. The item could be nil, in which case, this method simply
// executes f and does not add the item to the controlbuf.
//
// The first return value indicates whether the item was successfully added to
// the control buffer. A non-nil error, specifically ErrConnClosing, is returned
// if the control buffer is already closed.
func (c *controlBuffer) executeAndPut(f func() bool, it cbItem) (bool, error) {
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return false, c.err
defer c.mu.Unlock()
if c.closed {
return false, ErrConnClosing
}
if f != nil {
if !f(it) { // f wasn't successful
c.mu.Unlock()
if !f() { // f wasn't successful
return false, nil
}
}
if it == nil {
return true, nil
}
var wakeUp bool
if c.consumerWaiting {
wakeUp = true
c.consumerWaiting = false
@ -359,98 +376,102 @@ func (c *controlBuffer) executeAndPut(f func(it any) bool, it cbItem) (bool, err
if c.transportResponseFrames == maxQueuedTransportResponseFrames {
// We are adding the frame that puts us over the threshold; create
// a throttling channel.
c.trfChan.Store(make(chan struct{}))
ch := make(chan struct{})
c.trfChan.Store(&ch)
}
}
c.mu.Unlock()
if wakeUp {
select {
case c.ch <- struct{}{}:
case c.wakeupCh <- struct{}{}:
default:
}
}
return true, nil
}
// Note argument f should never be nil.
func (c *controlBuffer) execute(f func(it any) bool, it any) (bool, error) {
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
return false, c.err
}
if !f(it) { // f wasn't successful
c.mu.Unlock()
return false, nil
}
c.mu.Unlock()
return true, nil
}
// get returns the next control frame from the control buffer. If block is true
// **and** there are no control frames in the control buffer, the call blocks
// until one of the conditions is met: there is a frame to return or the
// transport is closed.
func (c *controlBuffer) get(block bool) (any, error) {
for {
c.mu.Lock()
if c.err != nil {
frame, err := c.getOnceLocked()
if frame != nil || err != nil || !block {
// If we read a frame or an error, we can return to the caller. The
// call to getOnceLocked() returns a nil frame and a nil error if
// there is nothing to read, and in that case, if the caller asked
// us not to block, we can return now as well.
c.mu.Unlock()
return nil, c.err
}
if !c.list.isEmpty() {
h := c.list.dequeue().(cbItem)
if h.isTransportResponseFrame() {
if c.transportResponseFrames == maxQueuedTransportResponseFrames {
// We are removing the frame that put us over the
// threshold; close and clear the throttling channel.
ch := c.trfChan.Load().(chan struct{})
close(ch)
c.trfChan.Store((chan struct{})(nil))
}
c.transportResponseFrames--
}
c.mu.Unlock()
return h, nil
}
if !block {
c.mu.Unlock()
return nil, nil
return frame, err
}
c.consumerWaiting = true
c.mu.Unlock()
// Release the lock above and wait to be woken up.
select {
case <-c.ch:
case <-c.wakeupCh:
case <-c.done:
return nil, errors.New("transport closed by client")
}
}
}
// Callers must not use this method, but should instead use get().
//
// Caller must hold c.mu.
func (c *controlBuffer) getOnceLocked() (any, error) {
if c.closed {
return false, ErrConnClosing
}
if c.list.isEmpty() {
return nil, nil
}
h := c.list.dequeue().(cbItem)
if h.isTransportResponseFrame() {
if c.transportResponseFrames == maxQueuedTransportResponseFrames {
// We are removing the frame that put us over the
// threshold; close and clear the throttling channel.
ch := c.trfChan.Swap(nil)
close(*ch)
}
c.transportResponseFrames--
}
return h, nil
}
// finish closes the control buffer, cleaning up any streams that have queued
// header frames. Once this method returns, no more frames can be added to the
// control buffer, and attempts to do so will return ErrConnClosing.
func (c *controlBuffer) finish() {
c.mu.Lock()
if c.err != nil {
c.mu.Unlock()
defer c.mu.Unlock()
if c.closed {
return
}
c.err = ErrConnClosing
c.closed = true
// There may be headers for streams in the control buffer.
// These streams need to be cleaned out since the transport
// is still not aware of these yet.
for head := c.list.dequeueAll(); head != nil; head = head.next {
hdr, ok := head.it.(*headerFrame)
if !ok {
continue
}
if hdr.onOrphaned != nil { // It will be nil on the server-side.
hdr.onOrphaned(ErrConnClosing)
switch v := head.it.(type) {
case *headerFrame:
if v.onOrphaned != nil { // It will be nil on the server-side.
v.onOrphaned(ErrConnClosing)
}
case *dataFrame:
_ = v.reader.Close()
}
}
// In case throttle() is currently in flight, it needs to be unblocked.
// Otherwise, the transport may not close, since the transport is closed by
// the reader encountering the connection error.
ch, _ := c.trfChan.Load().(chan struct{})
ch := c.trfChan.Swap(nil)
if ch != nil {
close(ch)
close(*ch)
}
c.trfChan.Store((chan struct{})(nil))
c.mu.Unlock()
}
type side int
@ -466,7 +487,7 @@ const (
// stream maintains a queue of data frames; as loopy receives data frames
// it gets added to the queue of the relevant stream.
// Loopy goes over this list of active streams by processing one node every iteration,
// thereby closely resemebling to a round-robin scheduling over all streams. While
// thereby closely resembling a round-robin scheduling over all streams. While
// processing a stream, loopy writes out data bytes from this stream capped by the min
// of http2MaxFrameLen, connection-level flow control and stream-level flow control.
type loopyWriter struct {
@ -490,26 +511,29 @@ type loopyWriter struct {
draining bool
conn net.Conn
logger *grpclog.PrefixLogger
bufferPool mem.BufferPool
// Side-specific handlers
ssGoAwayHandler func(*goAway) (bool, error)
}
func newLoopyWriter(s side, fr *framer, cbuf *controlBuffer, bdpEst *bdpEstimator, conn net.Conn, logger *grpclog.PrefixLogger) *loopyWriter {
func newLoopyWriter(s side, fr *framer, cbuf *controlBuffer, bdpEst *bdpEstimator, conn net.Conn, logger *grpclog.PrefixLogger, goAwayHandler func(*goAway) (bool, error), bufferPool mem.BufferPool) *loopyWriter {
var buf bytes.Buffer
l := &loopyWriter{
side: s,
cbuf: cbuf,
sendQuota: defaultWindowSize,
oiws: defaultWindowSize,
estdStreams: make(map[uint32]*outStream),
activeStreams: newOutStreamList(),
framer: fr,
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
bdpEst: bdpEst,
conn: conn,
logger: logger,
side: s,
cbuf: cbuf,
sendQuota: defaultWindowSize,
oiws: defaultWindowSize,
estdStreams: make(map[uint32]*outStream),
activeStreams: newOutStreamList(),
framer: fr,
hBuf: &buf,
hEnc: hpack.NewEncoder(&buf),
bdpEst: bdpEst,
conn: conn,
logger: logger,
ssGoAwayHandler: goAwayHandler,
bufferPool: bufferPool,
}
return l
}
@ -767,6 +791,11 @@ func (l *loopyWriter) cleanupStreamHandler(c *cleanupStream) error {
// not be established yet.
delete(l.estdStreams, c.streamID)
str.deleteSelf()
for head := str.itl.dequeueAll(); head != nil; head = head.next {
if df, ok := head.it.(*dataFrame); ok {
_ = df.reader.Close()
}
}
}
if c.rst { // If RST_STREAM needs to be sent.
if err := l.framer.fr.WriteRSTStream(c.streamID, c.rstCode); err != nil {
@ -902,16 +931,18 @@ func (l *loopyWriter) processData() (bool, error) {
dataItem := str.itl.peek().(*dataFrame) // Peek at the first data item this stream.
// A data item is represented by a dataFrame, since it later translates into
// multiple HTTP2 data frames.
// Every dataFrame has two buffers; h that keeps grpc-message header and d that is actual data.
// As an optimization to keep wire traffic low, data from d is copied to h to make as big as the
// maximum possible HTTP2 frame size.
// Every dataFrame has two buffers; h that keeps grpc-message header and data
// that is the actual message. As an optimization to keep wire traffic low, data
// from data is copied to h to make as big as the maximum possible HTTP2 frame
// size.
if len(dataItem.h) == 0 && len(dataItem.d) == 0 { // Empty data frame
if len(dataItem.h) == 0 && dataItem.reader.Remaining() == 0 { // Empty data frame
// Client sends out empty data frame with endStream = true
if err := l.framer.fr.WriteData(dataItem.streamID, dataItem.endStream, nil); err != nil {
return false, err
}
str.itl.dequeue() // remove the empty data item from stream
_ = dataItem.reader.Close()
if str.itl.isEmpty() {
str.state = empty
} else if trailer, ok := str.itl.peek().(*headerFrame); ok { // the next item is trailers.
@ -926,9 +957,7 @@ func (l *loopyWriter) processData() (bool, error) {
}
return false, nil
}
var (
buf []byte
)
// Figure out the maximum size we can send
maxSize := http2MaxFrameLen
if strQuota := int(l.oiws) - str.bytesOutStanding; strQuota <= 0 { // stream-level flow control.
@ -942,43 +971,50 @@ func (l *loopyWriter) processData() (bool, error) {
}
// Compute how much of the header and data we can send within quota and max frame length
hSize := min(maxSize, len(dataItem.h))
dSize := min(maxSize-hSize, len(dataItem.d))
if hSize != 0 {
if dSize == 0 {
buf = dataItem.h
} else {
// We can add some data to grpc message header to distribute bytes more equally across frames.
// Copy on the stack to avoid generating garbage
var localBuf [http2MaxFrameLen]byte
copy(localBuf[:hSize], dataItem.h)
copy(localBuf[hSize:], dataItem.d[:dSize])
buf = localBuf[:hSize+dSize]
}
} else {
buf = dataItem.d
}
dSize := min(maxSize-hSize, dataItem.reader.Remaining())
remainingBytes := len(dataItem.h) + dataItem.reader.Remaining() - hSize - dSize
size := hSize + dSize
var buf *[]byte
if hSize != 0 && dSize == 0 {
buf = &dataItem.h
} else {
// Note: this is only necessary because the http2.Framer does not support
// partially writing a frame, so the sequence must be materialized into a buffer.
// TODO: Revisit once https://github.com/golang/go/issues/66655 is addressed.
pool := l.bufferPool
if pool == nil {
// Note that this is only supposed to be nil in tests. Otherwise, stream is
// always initialized with a BufferPool.
pool = mem.DefaultBufferPool()
}
buf = pool.Get(size)
defer pool.Put(buf)
copy((*buf)[:hSize], dataItem.h)
_, _ = dataItem.reader.Read((*buf)[hSize:])
}
// Now that outgoing flow controls are checked we can replenish str's write quota
str.wq.replenish(size)
var endStream bool
// If this is the last data message on this stream and all of it can be written in this iteration.
if dataItem.endStream && len(dataItem.h)+len(dataItem.d) <= size {
if dataItem.endStream && remainingBytes == 0 {
endStream = true
}
if dataItem.onEachWrite != nil {
dataItem.onEachWrite()
}
if err := l.framer.fr.WriteData(dataItem.streamID, endStream, buf[:size]); err != nil {
if err := l.framer.fr.WriteData(dataItem.streamID, endStream, (*buf)[:size]); err != nil {
return false, err
}
str.bytesOutStanding += size
l.sendQuota -= uint32(size)
dataItem.h = dataItem.h[hSize:]
dataItem.d = dataItem.d[dSize:]
if len(dataItem.h) == 0 && len(dataItem.d) == 0 { // All the data from that message was written out.
if remainingBytes == 0 { // All the data from that message was written out.
_ = dataItem.reader.Close()
str.itl.dequeue()
}
if str.itl.isEmpty() {