mirror of
https://gitea.com/Lydanne/buildx.git
synced 2025-07-09 21:17:09 +08:00
go.mod: update k8s deps to v0.26.2 (remove "replace" rule)
Replace rules are not inherited by consumers of buildx as a module, and as such would default to use the v0.26.2 version. Removing the replace rules also removes various (indirect) dependencies (although brings in some new packages from k8s itself). The "azure" and "gcp" authentication packages in k8s.io/go-client are now no longer functional, so removing those imports. Signed-off-by: Sebastiaan van Stijn <github@gone.nl>
This commit is contained in:
50
vendor/golang.org/x/crypto/pkcs12/bmp-string.go
generated
vendored
50
vendor/golang.org/x/crypto/pkcs12/bmp-string.go
generated
vendored
@ -1,50 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"unicode/utf16"
|
||||
)
|
||||
|
||||
// bmpString returns s encoded in UCS-2 with a zero terminator.
|
||||
func bmpString(s string) ([]byte, error) {
|
||||
// References:
|
||||
// https://tools.ietf.org/html/rfc7292#appendix-B.1
|
||||
// https://en.wikipedia.org/wiki/Plane_(Unicode)#Basic_Multilingual_Plane
|
||||
// - non-BMP characters are encoded in UTF 16 by using a surrogate pair of 16-bit codes
|
||||
// EncodeRune returns 0xfffd if the rune does not need special encoding
|
||||
// - the above RFC provides the info that BMPStrings are NULL terminated.
|
||||
|
||||
ret := make([]byte, 0, 2*len(s)+2)
|
||||
|
||||
for _, r := range s {
|
||||
if t, _ := utf16.EncodeRune(r); t != 0xfffd {
|
||||
return nil, errors.New("pkcs12: string contains characters that cannot be encoded in UCS-2")
|
||||
}
|
||||
ret = append(ret, byte(r/256), byte(r%256))
|
||||
}
|
||||
|
||||
return append(ret, 0, 0), nil
|
||||
}
|
||||
|
||||
func decodeBMPString(bmpString []byte) (string, error) {
|
||||
if len(bmpString)%2 != 0 {
|
||||
return "", errors.New("pkcs12: odd-length BMP string")
|
||||
}
|
||||
|
||||
// strip terminator if present
|
||||
if l := len(bmpString); l >= 2 && bmpString[l-1] == 0 && bmpString[l-2] == 0 {
|
||||
bmpString = bmpString[:l-2]
|
||||
}
|
||||
|
||||
s := make([]uint16, 0, len(bmpString)/2)
|
||||
for len(bmpString) > 0 {
|
||||
s = append(s, uint16(bmpString[0])<<8+uint16(bmpString[1]))
|
||||
bmpString = bmpString[2:]
|
||||
}
|
||||
|
||||
return string(utf16.Decode(s)), nil
|
||||
}
|
131
vendor/golang.org/x/crypto/pkcs12/crypto.go
generated
vendored
131
vendor/golang.org/x/crypto/pkcs12/crypto.go
generated
vendored
@ -1,131 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/cipher"
|
||||
"crypto/des"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/asn1"
|
||||
"errors"
|
||||
|
||||
"golang.org/x/crypto/pkcs12/internal/rc2"
|
||||
)
|
||||
|
||||
var (
|
||||
oidPBEWithSHAAnd3KeyTripleDESCBC = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 12, 1, 3})
|
||||
oidPBEWithSHAAnd40BitRC2CBC = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 12, 1, 6})
|
||||
)
|
||||
|
||||
// pbeCipher is an abstraction of a PKCS#12 cipher.
|
||||
type pbeCipher interface {
|
||||
// create returns a cipher.Block given a key.
|
||||
create(key []byte) (cipher.Block, error)
|
||||
// deriveKey returns a key derived from the given password and salt.
|
||||
deriveKey(salt, password []byte, iterations int) []byte
|
||||
// deriveKey returns an IV derived from the given password and salt.
|
||||
deriveIV(salt, password []byte, iterations int) []byte
|
||||
}
|
||||
|
||||
type shaWithTripleDESCBC struct{}
|
||||
|
||||
func (shaWithTripleDESCBC) create(key []byte) (cipher.Block, error) {
|
||||
return des.NewTripleDESCipher(key)
|
||||
}
|
||||
|
||||
func (shaWithTripleDESCBC) deriveKey(salt, password []byte, iterations int) []byte {
|
||||
return pbkdf(sha1Sum, 20, 64, salt, password, iterations, 1, 24)
|
||||
}
|
||||
|
||||
func (shaWithTripleDESCBC) deriveIV(salt, password []byte, iterations int) []byte {
|
||||
return pbkdf(sha1Sum, 20, 64, salt, password, iterations, 2, 8)
|
||||
}
|
||||
|
||||
type shaWith40BitRC2CBC struct{}
|
||||
|
||||
func (shaWith40BitRC2CBC) create(key []byte) (cipher.Block, error) {
|
||||
return rc2.New(key, len(key)*8)
|
||||
}
|
||||
|
||||
func (shaWith40BitRC2CBC) deriveKey(salt, password []byte, iterations int) []byte {
|
||||
return pbkdf(sha1Sum, 20, 64, salt, password, iterations, 1, 5)
|
||||
}
|
||||
|
||||
func (shaWith40BitRC2CBC) deriveIV(salt, password []byte, iterations int) []byte {
|
||||
return pbkdf(sha1Sum, 20, 64, salt, password, iterations, 2, 8)
|
||||
}
|
||||
|
||||
type pbeParams struct {
|
||||
Salt []byte
|
||||
Iterations int
|
||||
}
|
||||
|
||||
func pbDecrypterFor(algorithm pkix.AlgorithmIdentifier, password []byte) (cipher.BlockMode, int, error) {
|
||||
var cipherType pbeCipher
|
||||
|
||||
switch {
|
||||
case algorithm.Algorithm.Equal(oidPBEWithSHAAnd3KeyTripleDESCBC):
|
||||
cipherType = shaWithTripleDESCBC{}
|
||||
case algorithm.Algorithm.Equal(oidPBEWithSHAAnd40BitRC2CBC):
|
||||
cipherType = shaWith40BitRC2CBC{}
|
||||
default:
|
||||
return nil, 0, NotImplementedError("algorithm " + algorithm.Algorithm.String() + " is not supported")
|
||||
}
|
||||
|
||||
var params pbeParams
|
||||
if err := unmarshal(algorithm.Parameters.FullBytes, ¶ms); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
key := cipherType.deriveKey(params.Salt, password, params.Iterations)
|
||||
iv := cipherType.deriveIV(params.Salt, password, params.Iterations)
|
||||
|
||||
block, err := cipherType.create(key)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
return cipher.NewCBCDecrypter(block, iv), block.BlockSize(), nil
|
||||
}
|
||||
|
||||
func pbDecrypt(info decryptable, password []byte) (decrypted []byte, err error) {
|
||||
cbc, blockSize, err := pbDecrypterFor(info.Algorithm(), password)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
encrypted := info.Data()
|
||||
if len(encrypted) == 0 {
|
||||
return nil, errors.New("pkcs12: empty encrypted data")
|
||||
}
|
||||
if len(encrypted)%blockSize != 0 {
|
||||
return nil, errors.New("pkcs12: input is not a multiple of the block size")
|
||||
}
|
||||
decrypted = make([]byte, len(encrypted))
|
||||
cbc.CryptBlocks(decrypted, encrypted)
|
||||
|
||||
psLen := int(decrypted[len(decrypted)-1])
|
||||
if psLen == 0 || psLen > blockSize {
|
||||
return nil, ErrDecryption
|
||||
}
|
||||
|
||||
if len(decrypted) < psLen {
|
||||
return nil, ErrDecryption
|
||||
}
|
||||
ps := decrypted[len(decrypted)-psLen:]
|
||||
decrypted = decrypted[:len(decrypted)-psLen]
|
||||
if !bytes.Equal(ps, bytes.Repeat([]byte{byte(psLen)}, psLen)) {
|
||||
return nil, ErrDecryption
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// decryptable abstracts an object that contains ciphertext.
|
||||
type decryptable interface {
|
||||
Algorithm() pkix.AlgorithmIdentifier
|
||||
Data() []byte
|
||||
}
|
23
vendor/golang.org/x/crypto/pkcs12/errors.go
generated
vendored
23
vendor/golang.org/x/crypto/pkcs12/errors.go
generated
vendored
@ -1,23 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import "errors"
|
||||
|
||||
var (
|
||||
// ErrDecryption represents a failure to decrypt the input.
|
||||
ErrDecryption = errors.New("pkcs12: decryption error, incorrect padding")
|
||||
|
||||
// ErrIncorrectPassword is returned when an incorrect password is detected.
|
||||
// Usually, P12/PFX data is signed to be able to verify the password.
|
||||
ErrIncorrectPassword = errors.New("pkcs12: decryption password incorrect")
|
||||
)
|
||||
|
||||
// NotImplementedError indicates that the input is not currently supported.
|
||||
type NotImplementedError string
|
||||
|
||||
func (e NotImplementedError) Error() string {
|
||||
return "pkcs12: " + string(e)
|
||||
}
|
268
vendor/golang.org/x/crypto/pkcs12/internal/rc2/rc2.go
generated
vendored
268
vendor/golang.org/x/crypto/pkcs12/internal/rc2/rc2.go
generated
vendored
@ -1,268 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package rc2 implements the RC2 cipher
|
||||
/*
|
||||
https://www.ietf.org/rfc/rfc2268.txt
|
||||
http://people.csail.mit.edu/rivest/pubs/KRRR98.pdf
|
||||
|
||||
This code is licensed under the MIT license.
|
||||
*/
|
||||
package rc2
|
||||
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"encoding/binary"
|
||||
"math/bits"
|
||||
)
|
||||
|
||||
// The rc2 block size in bytes
|
||||
const BlockSize = 8
|
||||
|
||||
type rc2Cipher struct {
|
||||
k [64]uint16
|
||||
}
|
||||
|
||||
// New returns a new rc2 cipher with the given key and effective key length t1
|
||||
func New(key []byte, t1 int) (cipher.Block, error) {
|
||||
// TODO(dgryski): error checking for key length
|
||||
return &rc2Cipher{
|
||||
k: expandKey(key, t1),
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (*rc2Cipher) BlockSize() int { return BlockSize }
|
||||
|
||||
var piTable = [256]byte{
|
||||
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
|
||||
0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
|
||||
0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
|
||||
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
|
||||
0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
|
||||
0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
|
||||
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
|
||||
0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
|
||||
0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
|
||||
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
|
||||
0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
|
||||
0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
|
||||
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
|
||||
0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
|
||||
0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
|
||||
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad,
|
||||
}
|
||||
|
||||
func expandKey(key []byte, t1 int) [64]uint16 {
|
||||
|
||||
l := make([]byte, 128)
|
||||
copy(l, key)
|
||||
|
||||
var t = len(key)
|
||||
var t8 = (t1 + 7) / 8
|
||||
var tm = byte(255 % uint(1<<(8+uint(t1)-8*uint(t8))))
|
||||
|
||||
for i := len(key); i < 128; i++ {
|
||||
l[i] = piTable[l[i-1]+l[uint8(i-t)]]
|
||||
}
|
||||
|
||||
l[128-t8] = piTable[l[128-t8]&tm]
|
||||
|
||||
for i := 127 - t8; i >= 0; i-- {
|
||||
l[i] = piTable[l[i+1]^l[i+t8]]
|
||||
}
|
||||
|
||||
var k [64]uint16
|
||||
|
||||
for i := range k {
|
||||
k[i] = uint16(l[2*i]) + uint16(l[2*i+1])*256
|
||||
}
|
||||
|
||||
return k
|
||||
}
|
||||
|
||||
func (c *rc2Cipher) Encrypt(dst, src []byte) {
|
||||
|
||||
r0 := binary.LittleEndian.Uint16(src[0:])
|
||||
r1 := binary.LittleEndian.Uint16(src[2:])
|
||||
r2 := binary.LittleEndian.Uint16(src[4:])
|
||||
r3 := binary.LittleEndian.Uint16(src[6:])
|
||||
|
||||
var j int
|
||||
|
||||
for j <= 16 {
|
||||
// mix r0
|
||||
r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
|
||||
r0 = bits.RotateLeft16(r0, 1)
|
||||
j++
|
||||
|
||||
// mix r1
|
||||
r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
|
||||
r1 = bits.RotateLeft16(r1, 2)
|
||||
j++
|
||||
|
||||
// mix r2
|
||||
r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
|
||||
r2 = bits.RotateLeft16(r2, 3)
|
||||
j++
|
||||
|
||||
// mix r3
|
||||
r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
|
||||
r3 = bits.RotateLeft16(r3, 5)
|
||||
j++
|
||||
|
||||
}
|
||||
|
||||
r0 = r0 + c.k[r3&63]
|
||||
r1 = r1 + c.k[r0&63]
|
||||
r2 = r2 + c.k[r1&63]
|
||||
r3 = r3 + c.k[r2&63]
|
||||
|
||||
for j <= 40 {
|
||||
// mix r0
|
||||
r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
|
||||
r0 = bits.RotateLeft16(r0, 1)
|
||||
j++
|
||||
|
||||
// mix r1
|
||||
r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
|
||||
r1 = bits.RotateLeft16(r1, 2)
|
||||
j++
|
||||
|
||||
// mix r2
|
||||
r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
|
||||
r2 = bits.RotateLeft16(r2, 3)
|
||||
j++
|
||||
|
||||
// mix r3
|
||||
r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
|
||||
r3 = bits.RotateLeft16(r3, 5)
|
||||
j++
|
||||
|
||||
}
|
||||
|
||||
r0 = r0 + c.k[r3&63]
|
||||
r1 = r1 + c.k[r0&63]
|
||||
r2 = r2 + c.k[r1&63]
|
||||
r3 = r3 + c.k[r2&63]
|
||||
|
||||
for j <= 60 {
|
||||
// mix r0
|
||||
r0 = r0 + c.k[j] + (r3 & r2) + ((^r3) & r1)
|
||||
r0 = bits.RotateLeft16(r0, 1)
|
||||
j++
|
||||
|
||||
// mix r1
|
||||
r1 = r1 + c.k[j] + (r0 & r3) + ((^r0) & r2)
|
||||
r1 = bits.RotateLeft16(r1, 2)
|
||||
j++
|
||||
|
||||
// mix r2
|
||||
r2 = r2 + c.k[j] + (r1 & r0) + ((^r1) & r3)
|
||||
r2 = bits.RotateLeft16(r2, 3)
|
||||
j++
|
||||
|
||||
// mix r3
|
||||
r3 = r3 + c.k[j] + (r2 & r1) + ((^r2) & r0)
|
||||
r3 = bits.RotateLeft16(r3, 5)
|
||||
j++
|
||||
}
|
||||
|
||||
binary.LittleEndian.PutUint16(dst[0:], r0)
|
||||
binary.LittleEndian.PutUint16(dst[2:], r1)
|
||||
binary.LittleEndian.PutUint16(dst[4:], r2)
|
||||
binary.LittleEndian.PutUint16(dst[6:], r3)
|
||||
}
|
||||
|
||||
func (c *rc2Cipher) Decrypt(dst, src []byte) {
|
||||
|
||||
r0 := binary.LittleEndian.Uint16(src[0:])
|
||||
r1 := binary.LittleEndian.Uint16(src[2:])
|
||||
r2 := binary.LittleEndian.Uint16(src[4:])
|
||||
r3 := binary.LittleEndian.Uint16(src[6:])
|
||||
|
||||
j := 63
|
||||
|
||||
for j >= 44 {
|
||||
// unmix r3
|
||||
r3 = bits.RotateLeft16(r3, 16-5)
|
||||
r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
|
||||
j--
|
||||
|
||||
// unmix r2
|
||||
r2 = bits.RotateLeft16(r2, 16-3)
|
||||
r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
|
||||
j--
|
||||
|
||||
// unmix r1
|
||||
r1 = bits.RotateLeft16(r1, 16-2)
|
||||
r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
|
||||
j--
|
||||
|
||||
// unmix r0
|
||||
r0 = bits.RotateLeft16(r0, 16-1)
|
||||
r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
|
||||
j--
|
||||
}
|
||||
|
||||
r3 = r3 - c.k[r2&63]
|
||||
r2 = r2 - c.k[r1&63]
|
||||
r1 = r1 - c.k[r0&63]
|
||||
r0 = r0 - c.k[r3&63]
|
||||
|
||||
for j >= 20 {
|
||||
// unmix r3
|
||||
r3 = bits.RotateLeft16(r3, 16-5)
|
||||
r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
|
||||
j--
|
||||
|
||||
// unmix r2
|
||||
r2 = bits.RotateLeft16(r2, 16-3)
|
||||
r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
|
||||
j--
|
||||
|
||||
// unmix r1
|
||||
r1 = bits.RotateLeft16(r1, 16-2)
|
||||
r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
|
||||
j--
|
||||
|
||||
// unmix r0
|
||||
r0 = bits.RotateLeft16(r0, 16-1)
|
||||
r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
|
||||
j--
|
||||
|
||||
}
|
||||
|
||||
r3 = r3 - c.k[r2&63]
|
||||
r2 = r2 - c.k[r1&63]
|
||||
r1 = r1 - c.k[r0&63]
|
||||
r0 = r0 - c.k[r3&63]
|
||||
|
||||
for j >= 0 {
|
||||
// unmix r3
|
||||
r3 = bits.RotateLeft16(r3, 16-5)
|
||||
r3 = r3 - c.k[j] - (r2 & r1) - ((^r2) & r0)
|
||||
j--
|
||||
|
||||
// unmix r2
|
||||
r2 = bits.RotateLeft16(r2, 16-3)
|
||||
r2 = r2 - c.k[j] - (r1 & r0) - ((^r1) & r3)
|
||||
j--
|
||||
|
||||
// unmix r1
|
||||
r1 = bits.RotateLeft16(r1, 16-2)
|
||||
r1 = r1 - c.k[j] - (r0 & r3) - ((^r0) & r2)
|
||||
j--
|
||||
|
||||
// unmix r0
|
||||
r0 = bits.RotateLeft16(r0, 16-1)
|
||||
r0 = r0 - c.k[j] - (r3 & r2) - ((^r3) & r1)
|
||||
j--
|
||||
|
||||
}
|
||||
|
||||
binary.LittleEndian.PutUint16(dst[0:], r0)
|
||||
binary.LittleEndian.PutUint16(dst[2:], r1)
|
||||
binary.LittleEndian.PutUint16(dst[4:], r2)
|
||||
binary.LittleEndian.PutUint16(dst[6:], r3)
|
||||
}
|
45
vendor/golang.org/x/crypto/pkcs12/mac.go
generated
vendored
45
vendor/golang.org/x/crypto/pkcs12/mac.go
generated
vendored
@ -1,45 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"crypto/hmac"
|
||||
"crypto/sha1"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/asn1"
|
||||
)
|
||||
|
||||
type macData struct {
|
||||
Mac digestInfo
|
||||
MacSalt []byte
|
||||
Iterations int `asn1:"optional,default:1"`
|
||||
}
|
||||
|
||||
// from PKCS#7:
|
||||
type digestInfo struct {
|
||||
Algorithm pkix.AlgorithmIdentifier
|
||||
Digest []byte
|
||||
}
|
||||
|
||||
var (
|
||||
oidSHA1 = asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26})
|
||||
)
|
||||
|
||||
func verifyMac(macData *macData, message, password []byte) error {
|
||||
if !macData.Mac.Algorithm.Algorithm.Equal(oidSHA1) {
|
||||
return NotImplementedError("unknown digest algorithm: " + macData.Mac.Algorithm.Algorithm.String())
|
||||
}
|
||||
|
||||
key := pbkdf(sha1Sum, 20, 64, macData.MacSalt, password, macData.Iterations, 3, 20)
|
||||
|
||||
mac := hmac.New(sha1.New, key)
|
||||
mac.Write(message)
|
||||
expectedMAC := mac.Sum(nil)
|
||||
|
||||
if !hmac.Equal(macData.Mac.Digest, expectedMAC) {
|
||||
return ErrIncorrectPassword
|
||||
}
|
||||
return nil
|
||||
}
|
170
vendor/golang.org/x/crypto/pkcs12/pbkdf.go
generated
vendored
170
vendor/golang.org/x/crypto/pkcs12/pbkdf.go
generated
vendored
@ -1,170 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/sha1"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
var (
|
||||
one = big.NewInt(1)
|
||||
)
|
||||
|
||||
// sha1Sum returns the SHA-1 hash of in.
|
||||
func sha1Sum(in []byte) []byte {
|
||||
sum := sha1.Sum(in)
|
||||
return sum[:]
|
||||
}
|
||||
|
||||
// fillWithRepeats returns v*ceiling(len(pattern) / v) bytes consisting of
|
||||
// repeats of pattern.
|
||||
func fillWithRepeats(pattern []byte, v int) []byte {
|
||||
if len(pattern) == 0 {
|
||||
return nil
|
||||
}
|
||||
outputLen := v * ((len(pattern) + v - 1) / v)
|
||||
return bytes.Repeat(pattern, (outputLen+len(pattern)-1)/len(pattern))[:outputLen]
|
||||
}
|
||||
|
||||
func pbkdf(hash func([]byte) []byte, u, v int, salt, password []byte, r int, ID byte, size int) (key []byte) {
|
||||
// implementation of https://tools.ietf.org/html/rfc7292#appendix-B.2 , RFC text verbatim in comments
|
||||
|
||||
// Let H be a hash function built around a compression function f:
|
||||
|
||||
// Z_2^u x Z_2^v -> Z_2^u
|
||||
|
||||
// (that is, H has a chaining variable and output of length u bits, and
|
||||
// the message input to the compression function of H is v bits). The
|
||||
// values for u and v are as follows:
|
||||
|
||||
// HASH FUNCTION VALUE u VALUE v
|
||||
// MD2, MD5 128 512
|
||||
// SHA-1 160 512
|
||||
// SHA-224 224 512
|
||||
// SHA-256 256 512
|
||||
// SHA-384 384 1024
|
||||
// SHA-512 512 1024
|
||||
// SHA-512/224 224 1024
|
||||
// SHA-512/256 256 1024
|
||||
|
||||
// Furthermore, let r be the iteration count.
|
||||
|
||||
// We assume here that u and v are both multiples of 8, as are the
|
||||
// lengths of the password and salt strings (which we denote by p and s,
|
||||
// respectively) and the number n of pseudorandom bits required. In
|
||||
// addition, u and v are of course non-zero.
|
||||
|
||||
// For information on security considerations for MD5 [19], see [25] and
|
||||
// [1], and on those for MD2, see [18].
|
||||
|
||||
// The following procedure can be used to produce pseudorandom bits for
|
||||
// a particular "purpose" that is identified by a byte called "ID".
|
||||
// This standard specifies 3 different values for the ID byte:
|
||||
|
||||
// 1. If ID=1, then the pseudorandom bits being produced are to be used
|
||||
// as key material for performing encryption or decryption.
|
||||
|
||||
// 2. If ID=2, then the pseudorandom bits being produced are to be used
|
||||
// as an IV (Initial Value) for encryption or decryption.
|
||||
|
||||
// 3. If ID=3, then the pseudorandom bits being produced are to be used
|
||||
// as an integrity key for MACing.
|
||||
|
||||
// 1. Construct a string, D (the "diversifier"), by concatenating v/8
|
||||
// copies of ID.
|
||||
var D []byte
|
||||
for i := 0; i < v; i++ {
|
||||
D = append(D, ID)
|
||||
}
|
||||
|
||||
// 2. Concatenate copies of the salt together to create a string S of
|
||||
// length v(ceiling(s/v)) bits (the final copy of the salt may be
|
||||
// truncated to create S). Note that if the salt is the empty
|
||||
// string, then so is S.
|
||||
|
||||
S := fillWithRepeats(salt, v)
|
||||
|
||||
// 3. Concatenate copies of the password together to create a string P
|
||||
// of length v(ceiling(p/v)) bits (the final copy of the password
|
||||
// may be truncated to create P). Note that if the password is the
|
||||
// empty string, then so is P.
|
||||
|
||||
P := fillWithRepeats(password, v)
|
||||
|
||||
// 4. Set I=S||P to be the concatenation of S and P.
|
||||
I := append(S, P...)
|
||||
|
||||
// 5. Set c=ceiling(n/u).
|
||||
c := (size + u - 1) / u
|
||||
|
||||
// 6. For i=1, 2, ..., c, do the following:
|
||||
A := make([]byte, c*20)
|
||||
var IjBuf []byte
|
||||
for i := 0; i < c; i++ {
|
||||
// A. Set A2=H^r(D||I). (i.e., the r-th hash of D||1,
|
||||
// H(H(H(... H(D||I))))
|
||||
Ai := hash(append(D, I...))
|
||||
for j := 1; j < r; j++ {
|
||||
Ai = hash(Ai)
|
||||
}
|
||||
copy(A[i*20:], Ai[:])
|
||||
|
||||
if i < c-1 { // skip on last iteration
|
||||
// B. Concatenate copies of Ai to create a string B of length v
|
||||
// bits (the final copy of Ai may be truncated to create B).
|
||||
var B []byte
|
||||
for len(B) < v {
|
||||
B = append(B, Ai[:]...)
|
||||
}
|
||||
B = B[:v]
|
||||
|
||||
// C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit
|
||||
// blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by
|
||||
// setting I_j=(I_j+B+1) mod 2^v for each j.
|
||||
{
|
||||
Bbi := new(big.Int).SetBytes(B)
|
||||
Ij := new(big.Int)
|
||||
|
||||
for j := 0; j < len(I)/v; j++ {
|
||||
Ij.SetBytes(I[j*v : (j+1)*v])
|
||||
Ij.Add(Ij, Bbi)
|
||||
Ij.Add(Ij, one)
|
||||
Ijb := Ij.Bytes()
|
||||
// We expect Ijb to be exactly v bytes,
|
||||
// if it is longer or shorter we must
|
||||
// adjust it accordingly.
|
||||
if len(Ijb) > v {
|
||||
Ijb = Ijb[len(Ijb)-v:]
|
||||
}
|
||||
if len(Ijb) < v {
|
||||
if IjBuf == nil {
|
||||
IjBuf = make([]byte, v)
|
||||
}
|
||||
bytesShort := v - len(Ijb)
|
||||
for i := 0; i < bytesShort; i++ {
|
||||
IjBuf[i] = 0
|
||||
}
|
||||
copy(IjBuf[bytesShort:], Ijb)
|
||||
Ijb = IjBuf
|
||||
}
|
||||
copy(I[j*v:(j+1)*v], Ijb)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// 7. Concatenate A_1, A_2, ..., A_c together to form a pseudorandom
|
||||
// bit string, A.
|
||||
|
||||
// 8. Use the first n bits of A as the output of this entire process.
|
||||
return A[:size]
|
||||
|
||||
// If the above process is being used to generate a DES key, the process
|
||||
// should be used to create 64 random bits, and the key's parity bits
|
||||
// should be set after the 64 bits have been produced. Similar concerns
|
||||
// hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any
|
||||
// similar keys with parity bits "built into them".
|
||||
}
|
360
vendor/golang.org/x/crypto/pkcs12/pkcs12.go
generated
vendored
360
vendor/golang.org/x/crypto/pkcs12/pkcs12.go
generated
vendored
@ -1,360 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Package pkcs12 implements some of PKCS#12.
|
||||
//
|
||||
// This implementation is distilled from https://tools.ietf.org/html/rfc7292
|
||||
// and referenced documents. It is intended for decoding P12/PFX-stored
|
||||
// certificates and keys for use with the crypto/tls package.
|
||||
//
|
||||
// This package is frozen. If it's missing functionality you need, consider
|
||||
// an alternative like software.sslmate.com/src/go-pkcs12.
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/rsa"
|
||||
"crypto/x509"
|
||||
"crypto/x509/pkix"
|
||||
"encoding/asn1"
|
||||
"encoding/hex"
|
||||
"encoding/pem"
|
||||
"errors"
|
||||
)
|
||||
|
||||
var (
|
||||
oidDataContentType = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 7, 1})
|
||||
oidEncryptedDataContentType = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 7, 6})
|
||||
|
||||
oidFriendlyName = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 9, 20})
|
||||
oidLocalKeyID = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 9, 21})
|
||||
oidMicrosoftCSPName = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 4, 1, 311, 17, 1})
|
||||
|
||||
errUnknownAttributeOID = errors.New("pkcs12: unknown attribute OID")
|
||||
)
|
||||
|
||||
type pfxPdu struct {
|
||||
Version int
|
||||
AuthSafe contentInfo
|
||||
MacData macData `asn1:"optional"`
|
||||
}
|
||||
|
||||
type contentInfo struct {
|
||||
ContentType asn1.ObjectIdentifier
|
||||
Content asn1.RawValue `asn1:"tag:0,explicit,optional"`
|
||||
}
|
||||
|
||||
type encryptedData struct {
|
||||
Version int
|
||||
EncryptedContentInfo encryptedContentInfo
|
||||
}
|
||||
|
||||
type encryptedContentInfo struct {
|
||||
ContentType asn1.ObjectIdentifier
|
||||
ContentEncryptionAlgorithm pkix.AlgorithmIdentifier
|
||||
EncryptedContent []byte `asn1:"tag:0,optional"`
|
||||
}
|
||||
|
||||
func (i encryptedContentInfo) Algorithm() pkix.AlgorithmIdentifier {
|
||||
return i.ContentEncryptionAlgorithm
|
||||
}
|
||||
|
||||
func (i encryptedContentInfo) Data() []byte { return i.EncryptedContent }
|
||||
|
||||
type safeBag struct {
|
||||
Id asn1.ObjectIdentifier
|
||||
Value asn1.RawValue `asn1:"tag:0,explicit"`
|
||||
Attributes []pkcs12Attribute `asn1:"set,optional"`
|
||||
}
|
||||
|
||||
type pkcs12Attribute struct {
|
||||
Id asn1.ObjectIdentifier
|
||||
Value asn1.RawValue `asn1:"set"`
|
||||
}
|
||||
|
||||
type encryptedPrivateKeyInfo struct {
|
||||
AlgorithmIdentifier pkix.AlgorithmIdentifier
|
||||
EncryptedData []byte
|
||||
}
|
||||
|
||||
func (i encryptedPrivateKeyInfo) Algorithm() pkix.AlgorithmIdentifier {
|
||||
return i.AlgorithmIdentifier
|
||||
}
|
||||
|
||||
func (i encryptedPrivateKeyInfo) Data() []byte {
|
||||
return i.EncryptedData
|
||||
}
|
||||
|
||||
// PEM block types
|
||||
const (
|
||||
certificateType = "CERTIFICATE"
|
||||
privateKeyType = "PRIVATE KEY"
|
||||
)
|
||||
|
||||
// unmarshal calls asn1.Unmarshal, but also returns an error if there is any
|
||||
// trailing data after unmarshaling.
|
||||
func unmarshal(in []byte, out interface{}) error {
|
||||
trailing, err := asn1.Unmarshal(in, out)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if len(trailing) != 0 {
|
||||
return errors.New("pkcs12: trailing data found")
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// ToPEM converts all "safe bags" contained in pfxData to PEM blocks.
|
||||
// Unknown attributes are discarded.
|
||||
//
|
||||
// Note that although the returned PEM blocks for private keys have type
|
||||
// "PRIVATE KEY", the bytes are not encoded according to PKCS #8, but according
|
||||
// to PKCS #1 for RSA keys and SEC 1 for ECDSA keys.
|
||||
func ToPEM(pfxData []byte, password string) ([]*pem.Block, error) {
|
||||
encodedPassword, err := bmpString(password)
|
||||
if err != nil {
|
||||
return nil, ErrIncorrectPassword
|
||||
}
|
||||
|
||||
bags, encodedPassword, err := getSafeContents(pfxData, encodedPassword)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
blocks := make([]*pem.Block, 0, len(bags))
|
||||
for _, bag := range bags {
|
||||
block, err := convertBag(&bag, encodedPassword)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
blocks = append(blocks, block)
|
||||
}
|
||||
|
||||
return blocks, nil
|
||||
}
|
||||
|
||||
func convertBag(bag *safeBag, password []byte) (*pem.Block, error) {
|
||||
block := &pem.Block{
|
||||
Headers: make(map[string]string),
|
||||
}
|
||||
|
||||
for _, attribute := range bag.Attributes {
|
||||
k, v, err := convertAttribute(&attribute)
|
||||
if err == errUnknownAttributeOID {
|
||||
continue
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
block.Headers[k] = v
|
||||
}
|
||||
|
||||
switch {
|
||||
case bag.Id.Equal(oidCertBag):
|
||||
block.Type = certificateType
|
||||
certsData, err := decodeCertBag(bag.Value.Bytes)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
block.Bytes = certsData
|
||||
case bag.Id.Equal(oidPKCS8ShroundedKeyBag):
|
||||
block.Type = privateKeyType
|
||||
|
||||
key, err := decodePkcs8ShroudedKeyBag(bag.Value.Bytes, password)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
switch key := key.(type) {
|
||||
case *rsa.PrivateKey:
|
||||
block.Bytes = x509.MarshalPKCS1PrivateKey(key)
|
||||
case *ecdsa.PrivateKey:
|
||||
block.Bytes, err = x509.MarshalECPrivateKey(key)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
default:
|
||||
return nil, errors.New("found unknown private key type in PKCS#8 wrapping")
|
||||
}
|
||||
default:
|
||||
return nil, errors.New("don't know how to convert a safe bag of type " + bag.Id.String())
|
||||
}
|
||||
return block, nil
|
||||
}
|
||||
|
||||
func convertAttribute(attribute *pkcs12Attribute) (key, value string, err error) {
|
||||
isString := false
|
||||
|
||||
switch {
|
||||
case attribute.Id.Equal(oidFriendlyName):
|
||||
key = "friendlyName"
|
||||
isString = true
|
||||
case attribute.Id.Equal(oidLocalKeyID):
|
||||
key = "localKeyId"
|
||||
case attribute.Id.Equal(oidMicrosoftCSPName):
|
||||
// This key is chosen to match OpenSSL.
|
||||
key = "Microsoft CSP Name"
|
||||
isString = true
|
||||
default:
|
||||
return "", "", errUnknownAttributeOID
|
||||
}
|
||||
|
||||
if isString {
|
||||
if err := unmarshal(attribute.Value.Bytes, &attribute.Value); err != nil {
|
||||
return "", "", err
|
||||
}
|
||||
if value, err = decodeBMPString(attribute.Value.Bytes); err != nil {
|
||||
return "", "", err
|
||||
}
|
||||
} else {
|
||||
var id []byte
|
||||
if err := unmarshal(attribute.Value.Bytes, &id); err != nil {
|
||||
return "", "", err
|
||||
}
|
||||
value = hex.EncodeToString(id)
|
||||
}
|
||||
|
||||
return key, value, nil
|
||||
}
|
||||
|
||||
// Decode extracts a certificate and private key from pfxData. This function
|
||||
// assumes that there is only one certificate and only one private key in the
|
||||
// pfxData; if there are more use ToPEM instead.
|
||||
func Decode(pfxData []byte, password string) (privateKey interface{}, certificate *x509.Certificate, err error) {
|
||||
encodedPassword, err := bmpString(password)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
bags, encodedPassword, err := getSafeContents(pfxData, encodedPassword)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if len(bags) != 2 {
|
||||
err = errors.New("pkcs12: expected exactly two safe bags in the PFX PDU")
|
||||
return
|
||||
}
|
||||
|
||||
for _, bag := range bags {
|
||||
switch {
|
||||
case bag.Id.Equal(oidCertBag):
|
||||
if certificate != nil {
|
||||
err = errors.New("pkcs12: expected exactly one certificate bag")
|
||||
}
|
||||
|
||||
certsData, err := decodeCertBag(bag.Value.Bytes)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
certs, err := x509.ParseCertificates(certsData)
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
if len(certs) != 1 {
|
||||
err = errors.New("pkcs12: expected exactly one certificate in the certBag")
|
||||
return nil, nil, err
|
||||
}
|
||||
certificate = certs[0]
|
||||
|
||||
case bag.Id.Equal(oidPKCS8ShroundedKeyBag):
|
||||
if privateKey != nil {
|
||||
err = errors.New("pkcs12: expected exactly one key bag")
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if privateKey, err = decodePkcs8ShroudedKeyBag(bag.Value.Bytes, encodedPassword); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if certificate == nil {
|
||||
return nil, nil, errors.New("pkcs12: certificate missing")
|
||||
}
|
||||
if privateKey == nil {
|
||||
return nil, nil, errors.New("pkcs12: private key missing")
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func getSafeContents(p12Data, password []byte) (bags []safeBag, updatedPassword []byte, err error) {
|
||||
pfx := new(pfxPdu)
|
||||
if err := unmarshal(p12Data, pfx); err != nil {
|
||||
return nil, nil, errors.New("pkcs12: error reading P12 data: " + err.Error())
|
||||
}
|
||||
|
||||
if pfx.Version != 3 {
|
||||
return nil, nil, NotImplementedError("can only decode v3 PFX PDU's")
|
||||
}
|
||||
|
||||
if !pfx.AuthSafe.ContentType.Equal(oidDataContentType) {
|
||||
return nil, nil, NotImplementedError("only password-protected PFX is implemented")
|
||||
}
|
||||
|
||||
// unmarshal the explicit bytes in the content for type 'data'
|
||||
if err := unmarshal(pfx.AuthSafe.Content.Bytes, &pfx.AuthSafe.Content); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if len(pfx.MacData.Mac.Algorithm.Algorithm) == 0 {
|
||||
return nil, nil, errors.New("pkcs12: no MAC in data")
|
||||
}
|
||||
|
||||
if err := verifyMac(&pfx.MacData, pfx.AuthSafe.Content.Bytes, password); err != nil {
|
||||
if err == ErrIncorrectPassword && len(password) == 2 && password[0] == 0 && password[1] == 0 {
|
||||
// some implementations use an empty byte array
|
||||
// for the empty string password try one more
|
||||
// time with empty-empty password
|
||||
password = nil
|
||||
err = verifyMac(&pfx.MacData, pfx.AuthSafe.Content.Bytes, password)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
}
|
||||
|
||||
var authenticatedSafe []contentInfo
|
||||
if err := unmarshal(pfx.AuthSafe.Content.Bytes, &authenticatedSafe); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if len(authenticatedSafe) != 2 {
|
||||
return nil, nil, NotImplementedError("expected exactly two items in the authenticated safe")
|
||||
}
|
||||
|
||||
for _, ci := range authenticatedSafe {
|
||||
var data []byte
|
||||
|
||||
switch {
|
||||
case ci.ContentType.Equal(oidDataContentType):
|
||||
if err := unmarshal(ci.Content.Bytes, &data); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
case ci.ContentType.Equal(oidEncryptedDataContentType):
|
||||
var encryptedData encryptedData
|
||||
if err := unmarshal(ci.Content.Bytes, &encryptedData); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
if encryptedData.Version != 0 {
|
||||
return nil, nil, NotImplementedError("only version 0 of EncryptedData is supported")
|
||||
}
|
||||
if data, err = pbDecrypt(encryptedData.EncryptedContentInfo, password); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
default:
|
||||
return nil, nil, NotImplementedError("only data and encryptedData content types are supported in authenticated safe")
|
||||
}
|
||||
|
||||
var safeContents []safeBag
|
||||
if err := unmarshal(data, &safeContents); err != nil {
|
||||
return nil, nil, err
|
||||
}
|
||||
bags = append(bags, safeContents...)
|
||||
}
|
||||
|
||||
return bags, password, nil
|
||||
}
|
57
vendor/golang.org/x/crypto/pkcs12/safebags.go
generated
vendored
57
vendor/golang.org/x/crypto/pkcs12/safebags.go
generated
vendored
@ -1,57 +0,0 @@
|
||||
// Copyright 2015 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package pkcs12
|
||||
|
||||
import (
|
||||
"crypto/x509"
|
||||
"encoding/asn1"
|
||||
"errors"
|
||||
)
|
||||
|
||||
var (
|
||||
// see https://tools.ietf.org/html/rfc7292#appendix-D
|
||||
oidCertTypeX509Certificate = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 9, 22, 1})
|
||||
oidPKCS8ShroundedKeyBag = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 12, 10, 1, 2})
|
||||
oidCertBag = asn1.ObjectIdentifier([]int{1, 2, 840, 113549, 1, 12, 10, 1, 3})
|
||||
)
|
||||
|
||||
type certBag struct {
|
||||
Id asn1.ObjectIdentifier
|
||||
Data []byte `asn1:"tag:0,explicit"`
|
||||
}
|
||||
|
||||
func decodePkcs8ShroudedKeyBag(asn1Data, password []byte) (privateKey interface{}, err error) {
|
||||
pkinfo := new(encryptedPrivateKeyInfo)
|
||||
if err = unmarshal(asn1Data, pkinfo); err != nil {
|
||||
return nil, errors.New("pkcs12: error decoding PKCS#8 shrouded key bag: " + err.Error())
|
||||
}
|
||||
|
||||
pkData, err := pbDecrypt(pkinfo, password)
|
||||
if err != nil {
|
||||
return nil, errors.New("pkcs12: error decrypting PKCS#8 shrouded key bag: " + err.Error())
|
||||
}
|
||||
|
||||
ret := new(asn1.RawValue)
|
||||
if err = unmarshal(pkData, ret); err != nil {
|
||||
return nil, errors.New("pkcs12: error unmarshaling decrypted private key: " + err.Error())
|
||||
}
|
||||
|
||||
if privateKey, err = x509.ParsePKCS8PrivateKey(pkData); err != nil {
|
||||
return nil, errors.New("pkcs12: error parsing PKCS#8 private key: " + err.Error())
|
||||
}
|
||||
|
||||
return privateKey, nil
|
||||
}
|
||||
|
||||
func decodeCertBag(asn1Data []byte) (x509Certificates []byte, err error) {
|
||||
bag := new(certBag)
|
||||
if err := unmarshal(asn1Data, bag); err != nil {
|
||||
return nil, errors.New("pkcs12: error decoding cert bag: " + err.Error())
|
||||
}
|
||||
if !bag.Id.Equal(oidCertTypeX509Certificate) {
|
||||
return nil, NotImplementedError("only X509 certificates are supported")
|
||||
}
|
||||
return bag.Data, nil
|
||||
}
|
Reference in New Issue
Block a user