mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-10-31 16:13:45 +08:00 
			
		
		
		
	vendor: initial vendor
Signed-off-by: Tonis Tiigi <tonistiigi@gmail.com>
This commit is contained in:
		
							
								
								
									
										77
									
								
								vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										77
									
								
								vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,77 @@ | ||||
| // Copyright 2012 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| /* | ||||
| Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC | ||||
| 2898 / PKCS #5 v2.0. | ||||
|  | ||||
| A key derivation function is useful when encrypting data based on a password | ||||
| or any other not-fully-random data. It uses a pseudorandom function to derive | ||||
| a secure encryption key based on the password. | ||||
|  | ||||
| While v2.0 of the standard defines only one pseudorandom function to use, | ||||
| HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved | ||||
| Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To | ||||
| choose, you can pass the `New` functions from the different SHA packages to | ||||
| pbkdf2.Key. | ||||
| */ | ||||
| package pbkdf2 // import "golang.org/x/crypto/pbkdf2" | ||||
|  | ||||
| import ( | ||||
| 	"crypto/hmac" | ||||
| 	"hash" | ||||
| ) | ||||
|  | ||||
| // Key derives a key from the password, salt and iteration count, returning a | ||||
| // []byte of length keylen that can be used as cryptographic key. The key is | ||||
| // derived based on the method described as PBKDF2 with the HMAC variant using | ||||
| // the supplied hash function. | ||||
| // | ||||
| // For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you | ||||
| // can get a derived key for e.g. AES-256 (which needs a 32-byte key) by | ||||
| // doing: | ||||
| // | ||||
| // 	dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New) | ||||
| // | ||||
| // Remember to get a good random salt. At least 8 bytes is recommended by the | ||||
| // RFC. | ||||
| // | ||||
| // Using a higher iteration count will increase the cost of an exhaustive | ||||
| // search but will also make derivation proportionally slower. | ||||
| func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte { | ||||
| 	prf := hmac.New(h, password) | ||||
| 	hashLen := prf.Size() | ||||
| 	numBlocks := (keyLen + hashLen - 1) / hashLen | ||||
|  | ||||
| 	var buf [4]byte | ||||
| 	dk := make([]byte, 0, numBlocks*hashLen) | ||||
| 	U := make([]byte, hashLen) | ||||
| 	for block := 1; block <= numBlocks; block++ { | ||||
| 		// N.B.: || means concatenation, ^ means XOR | ||||
| 		// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter | ||||
| 		// U_1 = PRF(password, salt || uint(i)) | ||||
| 		prf.Reset() | ||||
| 		prf.Write(salt) | ||||
| 		buf[0] = byte(block >> 24) | ||||
| 		buf[1] = byte(block >> 16) | ||||
| 		buf[2] = byte(block >> 8) | ||||
| 		buf[3] = byte(block) | ||||
| 		prf.Write(buf[:4]) | ||||
| 		dk = prf.Sum(dk) | ||||
| 		T := dk[len(dk)-hashLen:] | ||||
| 		copy(U, T) | ||||
|  | ||||
| 		// U_n = PRF(password, U_(n-1)) | ||||
| 		for n := 2; n <= iter; n++ { | ||||
| 			prf.Reset() | ||||
| 			prf.Write(U) | ||||
| 			U = U[:0] | ||||
| 			U = prf.Sum(U) | ||||
| 			for x := range U { | ||||
| 				T[x] ^= U[x] | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| 	return dk[:keyLen] | ||||
| } | ||||
		Reference in New Issue
	
	Block a user
	 Tonis Tiigi
					Tonis Tiigi