mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-10-31 08:03:43 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			891 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			891 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 Google Inc.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| // Package btree implements in-memory B-Trees of arbitrary degree.
 | |
| //
 | |
| // btree implements an in-memory B-Tree for use as an ordered data structure.
 | |
| // It is not meant for persistent storage solutions.
 | |
| //
 | |
| // It has a flatter structure than an equivalent red-black or other binary tree,
 | |
| // which in some cases yields better memory usage and/or performance.
 | |
| // See some discussion on the matter here:
 | |
| //   http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
 | |
| // Note, though, that this project is in no way related to the C++ B-Tree
 | |
| // implementation written about there.
 | |
| //
 | |
| // Within this tree, each node contains a slice of items and a (possibly nil)
 | |
| // slice of children.  For basic numeric values or raw structs, this can cause
 | |
| // efficiency differences when compared to equivalent C++ template code that
 | |
| // stores values in arrays within the node:
 | |
| //   * Due to the overhead of storing values as interfaces (each
 | |
| //     value needs to be stored as the value itself, then 2 words for the
 | |
| //     interface pointing to that value and its type), resulting in higher
 | |
| //     memory use.
 | |
| //   * Since interfaces can point to values anywhere in memory, values are
 | |
| //     most likely not stored in contiguous blocks, resulting in a higher
 | |
| //     number of cache misses.
 | |
| // These issues don't tend to matter, though, when working with strings or other
 | |
| // heap-allocated structures, since C++-equivalent structures also must store
 | |
| // pointers and also distribute their values across the heap.
 | |
| //
 | |
| // This implementation is designed to be a drop-in replacement to gollrb.LLRB
 | |
| // trees, (http://github.com/petar/gollrb), an excellent and probably the most
 | |
| // widely used ordered tree implementation in the Go ecosystem currently.
 | |
| // Its functions, therefore, exactly mirror those of
 | |
| // llrb.LLRB where possible.  Unlike gollrb, though, we currently don't
 | |
| // support storing multiple equivalent values.
 | |
| package btree
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"sort"
 | |
| 	"strings"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| // Item represents a single object in the tree.
 | |
| type Item interface {
 | |
| 	// Less tests whether the current item is less than the given argument.
 | |
| 	//
 | |
| 	// This must provide a strict weak ordering.
 | |
| 	// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
 | |
| 	// hold one of either a or b in the tree).
 | |
| 	Less(than Item) bool
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	DefaultFreeListSize = 32
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	nilItems    = make(items, 16)
 | |
| 	nilChildren = make(children, 16)
 | |
| )
 | |
| 
 | |
| // FreeList represents a free list of btree nodes. By default each
 | |
| // BTree has its own FreeList, but multiple BTrees can share the same
 | |
| // FreeList.
 | |
| // Two Btrees using the same freelist are safe for concurrent write access.
 | |
| type FreeList struct {
 | |
| 	mu       sync.Mutex
 | |
| 	freelist []*node
 | |
| }
 | |
| 
 | |
| // NewFreeList creates a new free list.
 | |
| // size is the maximum size of the returned free list.
 | |
| func NewFreeList(size int) *FreeList {
 | |
| 	return &FreeList{freelist: make([]*node, 0, size)}
 | |
| }
 | |
| 
 | |
| func (f *FreeList) newNode() (n *node) {
 | |
| 	f.mu.Lock()
 | |
| 	index := len(f.freelist) - 1
 | |
| 	if index < 0 {
 | |
| 		f.mu.Unlock()
 | |
| 		return new(node)
 | |
| 	}
 | |
| 	n = f.freelist[index]
 | |
| 	f.freelist[index] = nil
 | |
| 	f.freelist = f.freelist[:index]
 | |
| 	f.mu.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // freeNode adds the given node to the list, returning true if it was added
 | |
| // and false if it was discarded.
 | |
| func (f *FreeList) freeNode(n *node) (out bool) {
 | |
| 	f.mu.Lock()
 | |
| 	if len(f.freelist) < cap(f.freelist) {
 | |
| 		f.freelist = append(f.freelist, n)
 | |
| 		out = true
 | |
| 	}
 | |
| 	f.mu.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // ItemIterator allows callers of Ascend* to iterate in-order over portions of
 | |
| // the tree.  When this function returns false, iteration will stop and the
 | |
| // associated Ascend* function will immediately return.
 | |
| type ItemIterator func(i Item) bool
 | |
| 
 | |
| // New creates a new B-Tree with the given degree.
 | |
| //
 | |
| // New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
 | |
| // and 2-4 children).
 | |
| func New(degree int) *BTree {
 | |
| 	return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
 | |
| }
 | |
| 
 | |
| // NewWithFreeList creates a new B-Tree that uses the given node free list.
 | |
| func NewWithFreeList(degree int, f *FreeList) *BTree {
 | |
| 	if degree <= 1 {
 | |
| 		panic("bad degree")
 | |
| 	}
 | |
| 	return &BTree{
 | |
| 		degree: degree,
 | |
| 		cow:    ©OnWriteContext{freelist: f},
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // items stores items in a node.
 | |
| type items []Item
 | |
| 
 | |
| // insertAt inserts a value into the given index, pushing all subsequent values
 | |
| // forward.
 | |
| func (s *items) insertAt(index int, item Item) {
 | |
| 	*s = append(*s, nil)
 | |
| 	if index < len(*s) {
 | |
| 		copy((*s)[index+1:], (*s)[index:])
 | |
| 	}
 | |
| 	(*s)[index] = item
 | |
| }
 | |
| 
 | |
| // removeAt removes a value at a given index, pulling all subsequent values
 | |
| // back.
 | |
| func (s *items) removeAt(index int) Item {
 | |
| 	item := (*s)[index]
 | |
| 	copy((*s)[index:], (*s)[index+1:])
 | |
| 	(*s)[len(*s)-1] = nil
 | |
| 	*s = (*s)[:len(*s)-1]
 | |
| 	return item
 | |
| }
 | |
| 
 | |
| // pop removes and returns the last element in the list.
 | |
| func (s *items) pop() (out Item) {
 | |
| 	index := len(*s) - 1
 | |
| 	out = (*s)[index]
 | |
| 	(*s)[index] = nil
 | |
| 	*s = (*s)[:index]
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // truncate truncates this instance at index so that it contains only the
 | |
| // first index items. index must be less than or equal to length.
 | |
| func (s *items) truncate(index int) {
 | |
| 	var toClear items
 | |
| 	*s, toClear = (*s)[:index], (*s)[index:]
 | |
| 	for len(toClear) > 0 {
 | |
| 		toClear = toClear[copy(toClear, nilItems):]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // find returns the index where the given item should be inserted into this
 | |
| // list.  'found' is true if the item already exists in the list at the given
 | |
| // index.
 | |
| func (s items) find(item Item) (index int, found bool) {
 | |
| 	i := sort.Search(len(s), func(i int) bool {
 | |
| 		return item.Less(s[i])
 | |
| 	})
 | |
| 	if i > 0 && !s[i-1].Less(item) {
 | |
| 		return i - 1, true
 | |
| 	}
 | |
| 	return i, false
 | |
| }
 | |
| 
 | |
| // children stores child nodes in a node.
 | |
| type children []*node
 | |
| 
 | |
| // insertAt inserts a value into the given index, pushing all subsequent values
 | |
| // forward.
 | |
| func (s *children) insertAt(index int, n *node) {
 | |
| 	*s = append(*s, nil)
 | |
| 	if index < len(*s) {
 | |
| 		copy((*s)[index+1:], (*s)[index:])
 | |
| 	}
 | |
| 	(*s)[index] = n
 | |
| }
 | |
| 
 | |
| // removeAt removes a value at a given index, pulling all subsequent values
 | |
| // back.
 | |
| func (s *children) removeAt(index int) *node {
 | |
| 	n := (*s)[index]
 | |
| 	copy((*s)[index:], (*s)[index+1:])
 | |
| 	(*s)[len(*s)-1] = nil
 | |
| 	*s = (*s)[:len(*s)-1]
 | |
| 	return n
 | |
| }
 | |
| 
 | |
| // pop removes and returns the last element in the list.
 | |
| func (s *children) pop() (out *node) {
 | |
| 	index := len(*s) - 1
 | |
| 	out = (*s)[index]
 | |
| 	(*s)[index] = nil
 | |
| 	*s = (*s)[:index]
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // truncate truncates this instance at index so that it contains only the
 | |
| // first index children. index must be less than or equal to length.
 | |
| func (s *children) truncate(index int) {
 | |
| 	var toClear children
 | |
| 	*s, toClear = (*s)[:index], (*s)[index:]
 | |
| 	for len(toClear) > 0 {
 | |
| 		toClear = toClear[copy(toClear, nilChildren):]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // node is an internal node in a tree.
 | |
| //
 | |
| // It must at all times maintain the invariant that either
 | |
| //   * len(children) == 0, len(items) unconstrained
 | |
| //   * len(children) == len(items) + 1
 | |
| type node struct {
 | |
| 	items    items
 | |
| 	children children
 | |
| 	cow      *copyOnWriteContext
 | |
| }
 | |
| 
 | |
| func (n *node) mutableFor(cow *copyOnWriteContext) *node {
 | |
| 	if n.cow == cow {
 | |
| 		return n
 | |
| 	}
 | |
| 	out := cow.newNode()
 | |
| 	if cap(out.items) >= len(n.items) {
 | |
| 		out.items = out.items[:len(n.items)]
 | |
| 	} else {
 | |
| 		out.items = make(items, len(n.items), cap(n.items))
 | |
| 	}
 | |
| 	copy(out.items, n.items)
 | |
| 	// Copy children
 | |
| 	if cap(out.children) >= len(n.children) {
 | |
| 		out.children = out.children[:len(n.children)]
 | |
| 	} else {
 | |
| 		out.children = make(children, len(n.children), cap(n.children))
 | |
| 	}
 | |
| 	copy(out.children, n.children)
 | |
| 	return out
 | |
| }
 | |
| 
 | |
| func (n *node) mutableChild(i int) *node {
 | |
| 	c := n.children[i].mutableFor(n.cow)
 | |
| 	n.children[i] = c
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // split splits the given node at the given index.  The current node shrinks,
 | |
| // and this function returns the item that existed at that index and a new node
 | |
| // containing all items/children after it.
 | |
| func (n *node) split(i int) (Item, *node) {
 | |
| 	item := n.items[i]
 | |
| 	next := n.cow.newNode()
 | |
| 	next.items = append(next.items, n.items[i+1:]...)
 | |
| 	n.items.truncate(i)
 | |
| 	if len(n.children) > 0 {
 | |
| 		next.children = append(next.children, n.children[i+1:]...)
 | |
| 		n.children.truncate(i + 1)
 | |
| 	}
 | |
| 	return item, next
 | |
| }
 | |
| 
 | |
| // maybeSplitChild checks if a child should be split, and if so splits it.
 | |
| // Returns whether or not a split occurred.
 | |
| func (n *node) maybeSplitChild(i, maxItems int) bool {
 | |
| 	if len(n.children[i].items) < maxItems {
 | |
| 		return false
 | |
| 	}
 | |
| 	first := n.mutableChild(i)
 | |
| 	item, second := first.split(maxItems / 2)
 | |
| 	n.items.insertAt(i, item)
 | |
| 	n.children.insertAt(i+1, second)
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // insert inserts an item into the subtree rooted at this node, making sure
 | |
| // no nodes in the subtree exceed maxItems items.  Should an equivalent item be
 | |
| // be found/replaced by insert, it will be returned.
 | |
| func (n *node) insert(item Item, maxItems int) Item {
 | |
| 	i, found := n.items.find(item)
 | |
| 	if found {
 | |
| 		out := n.items[i]
 | |
| 		n.items[i] = item
 | |
| 		return out
 | |
| 	}
 | |
| 	if len(n.children) == 0 {
 | |
| 		n.items.insertAt(i, item)
 | |
| 		return nil
 | |
| 	}
 | |
| 	if n.maybeSplitChild(i, maxItems) {
 | |
| 		inTree := n.items[i]
 | |
| 		switch {
 | |
| 		case item.Less(inTree):
 | |
| 			// no change, we want first split node
 | |
| 		case inTree.Less(item):
 | |
| 			i++ // we want second split node
 | |
| 		default:
 | |
| 			out := n.items[i]
 | |
| 			n.items[i] = item
 | |
| 			return out
 | |
| 		}
 | |
| 	}
 | |
| 	return n.mutableChild(i).insert(item, maxItems)
 | |
| }
 | |
| 
 | |
| // get finds the given key in the subtree and returns it.
 | |
| func (n *node) get(key Item) Item {
 | |
| 	i, found := n.items.find(key)
 | |
| 	if found {
 | |
| 		return n.items[i]
 | |
| 	} else if len(n.children) > 0 {
 | |
| 		return n.children[i].get(key)
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // min returns the first item in the subtree.
 | |
| func min(n *node) Item {
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	for len(n.children) > 0 {
 | |
| 		n = n.children[0]
 | |
| 	}
 | |
| 	if len(n.items) == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return n.items[0]
 | |
| }
 | |
| 
 | |
| // max returns the last item in the subtree.
 | |
| func max(n *node) Item {
 | |
| 	if n == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	for len(n.children) > 0 {
 | |
| 		n = n.children[len(n.children)-1]
 | |
| 	}
 | |
| 	if len(n.items) == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return n.items[len(n.items)-1]
 | |
| }
 | |
| 
 | |
| // toRemove details what item to remove in a node.remove call.
 | |
| type toRemove int
 | |
| 
 | |
| const (
 | |
| 	removeItem toRemove = iota // removes the given item
 | |
| 	removeMin                  // removes smallest item in the subtree
 | |
| 	removeMax                  // removes largest item in the subtree
 | |
| )
 | |
| 
 | |
| // remove removes an item from the subtree rooted at this node.
 | |
| func (n *node) remove(item Item, minItems int, typ toRemove) Item {
 | |
| 	var i int
 | |
| 	var found bool
 | |
| 	switch typ {
 | |
| 	case removeMax:
 | |
| 		if len(n.children) == 0 {
 | |
| 			return n.items.pop()
 | |
| 		}
 | |
| 		i = len(n.items)
 | |
| 	case removeMin:
 | |
| 		if len(n.children) == 0 {
 | |
| 			return n.items.removeAt(0)
 | |
| 		}
 | |
| 		i = 0
 | |
| 	case removeItem:
 | |
| 		i, found = n.items.find(item)
 | |
| 		if len(n.children) == 0 {
 | |
| 			if found {
 | |
| 				return n.items.removeAt(i)
 | |
| 			}
 | |
| 			return nil
 | |
| 		}
 | |
| 	default:
 | |
| 		panic("invalid type")
 | |
| 	}
 | |
| 	// If we get to here, we have children.
 | |
| 	if len(n.children[i].items) <= minItems {
 | |
| 		return n.growChildAndRemove(i, item, minItems, typ)
 | |
| 	}
 | |
| 	child := n.mutableChild(i)
 | |
| 	// Either we had enough items to begin with, or we've done some
 | |
| 	// merging/stealing, because we've got enough now and we're ready to return
 | |
| 	// stuff.
 | |
| 	if found {
 | |
| 		// The item exists at index 'i', and the child we've selected can give us a
 | |
| 		// predecessor, since if we've gotten here it's got > minItems items in it.
 | |
| 		out := n.items[i]
 | |
| 		// We use our special-case 'remove' call with typ=maxItem to pull the
 | |
| 		// predecessor of item i (the rightmost leaf of our immediate left child)
 | |
| 		// and set it into where we pulled the item from.
 | |
| 		n.items[i] = child.remove(nil, minItems, removeMax)
 | |
| 		return out
 | |
| 	}
 | |
| 	// Final recursive call.  Once we're here, we know that the item isn't in this
 | |
| 	// node and that the child is big enough to remove from.
 | |
| 	return child.remove(item, minItems, typ)
 | |
| }
 | |
| 
 | |
| // growChildAndRemove grows child 'i' to make sure it's possible to remove an
 | |
| // item from it while keeping it at minItems, then calls remove to actually
 | |
| // remove it.
 | |
| //
 | |
| // Most documentation says we have to do two sets of special casing:
 | |
| //   1) item is in this node
 | |
| //   2) item is in child
 | |
| // In both cases, we need to handle the two subcases:
 | |
| //   A) node has enough values that it can spare one
 | |
| //   B) node doesn't have enough values
 | |
| // For the latter, we have to check:
 | |
| //   a) left sibling has node to spare
 | |
| //   b) right sibling has node to spare
 | |
| //   c) we must merge
 | |
| // To simplify our code here, we handle cases #1 and #2 the same:
 | |
| // If a node doesn't have enough items, we make sure it does (using a,b,c).
 | |
| // We then simply redo our remove call, and the second time (regardless of
 | |
| // whether we're in case 1 or 2), we'll have enough items and can guarantee
 | |
| // that we hit case A.
 | |
| func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
 | |
| 	if i > 0 && len(n.children[i-1].items) > minItems {
 | |
| 		// Steal from left child
 | |
| 		child := n.mutableChild(i)
 | |
| 		stealFrom := n.mutableChild(i - 1)
 | |
| 		stolenItem := stealFrom.items.pop()
 | |
| 		child.items.insertAt(0, n.items[i-1])
 | |
| 		n.items[i-1] = stolenItem
 | |
| 		if len(stealFrom.children) > 0 {
 | |
| 			child.children.insertAt(0, stealFrom.children.pop())
 | |
| 		}
 | |
| 	} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
 | |
| 		// steal from right child
 | |
| 		child := n.mutableChild(i)
 | |
| 		stealFrom := n.mutableChild(i + 1)
 | |
| 		stolenItem := stealFrom.items.removeAt(0)
 | |
| 		child.items = append(child.items, n.items[i])
 | |
| 		n.items[i] = stolenItem
 | |
| 		if len(stealFrom.children) > 0 {
 | |
| 			child.children = append(child.children, stealFrom.children.removeAt(0))
 | |
| 		}
 | |
| 	} else {
 | |
| 		if i >= len(n.items) {
 | |
| 			i--
 | |
| 		}
 | |
| 		child := n.mutableChild(i)
 | |
| 		// merge with right child
 | |
| 		mergeItem := n.items.removeAt(i)
 | |
| 		mergeChild := n.children.removeAt(i + 1)
 | |
| 		child.items = append(child.items, mergeItem)
 | |
| 		child.items = append(child.items, mergeChild.items...)
 | |
| 		child.children = append(child.children, mergeChild.children...)
 | |
| 		n.cow.freeNode(mergeChild)
 | |
| 	}
 | |
| 	return n.remove(item, minItems, typ)
 | |
| }
 | |
| 
 | |
| type direction int
 | |
| 
 | |
| const (
 | |
| 	descend = direction(-1)
 | |
| 	ascend  = direction(+1)
 | |
| )
 | |
| 
 | |
| // iterate provides a simple method for iterating over elements in the tree.
 | |
| //
 | |
| // When ascending, the 'start' should be less than 'stop' and when descending,
 | |
| // the 'start' should be greater than 'stop'. Setting 'includeStart' to true
 | |
| // will force the iterator to include the first item when it equals 'start',
 | |
| // thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
 | |
| // "greaterThan" or "lessThan" queries.
 | |
| func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
 | |
| 	var ok, found bool
 | |
| 	var index int
 | |
| 	switch dir {
 | |
| 	case ascend:
 | |
| 		if start != nil {
 | |
| 			index, _ = n.items.find(start)
 | |
| 		}
 | |
| 		for i := index; i < len(n.items); i++ {
 | |
| 			if len(n.children) > 0 {
 | |
| 				if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
 | |
| 					return hit, false
 | |
| 				}
 | |
| 			}
 | |
| 			if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
 | |
| 				hit = true
 | |
| 				continue
 | |
| 			}
 | |
| 			hit = true
 | |
| 			if stop != nil && !n.items[i].Less(stop) {
 | |
| 				return hit, false
 | |
| 			}
 | |
| 			if !iter(n.items[i]) {
 | |
| 				return hit, false
 | |
| 			}
 | |
| 		}
 | |
| 		if len(n.children) > 0 {
 | |
| 			if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
 | |
| 				return hit, false
 | |
| 			}
 | |
| 		}
 | |
| 	case descend:
 | |
| 		if start != nil {
 | |
| 			index, found = n.items.find(start)
 | |
| 			if !found {
 | |
| 				index = index - 1
 | |
| 			}
 | |
| 		} else {
 | |
| 			index = len(n.items) - 1
 | |
| 		}
 | |
| 		for i := index; i >= 0; i-- {
 | |
| 			if start != nil && !n.items[i].Less(start) {
 | |
| 				if !includeStart || hit || start.Less(n.items[i]) {
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			if len(n.children) > 0 {
 | |
| 				if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
 | |
| 					return hit, false
 | |
| 				}
 | |
| 			}
 | |
| 			if stop != nil && !stop.Less(n.items[i]) {
 | |
| 				return hit, false //	continue
 | |
| 			}
 | |
| 			hit = true
 | |
| 			if !iter(n.items[i]) {
 | |
| 				return hit, false
 | |
| 			}
 | |
| 		}
 | |
| 		if len(n.children) > 0 {
 | |
| 			if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
 | |
| 				return hit, false
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return hit, true
 | |
| }
 | |
| 
 | |
| // Used for testing/debugging purposes.
 | |
| func (n *node) print(w io.Writer, level int) {
 | |
| 	fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat("  ", level), n.items)
 | |
| 	for _, c := range n.children {
 | |
| 		c.print(w, level+1)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // BTree is an implementation of a B-Tree.
 | |
| //
 | |
| // BTree stores Item instances in an ordered structure, allowing easy insertion,
 | |
| // removal, and iteration.
 | |
| //
 | |
| // Write operations are not safe for concurrent mutation by multiple
 | |
| // goroutines, but Read operations are.
 | |
| type BTree struct {
 | |
| 	degree int
 | |
| 	length int
 | |
| 	root   *node
 | |
| 	cow    *copyOnWriteContext
 | |
| }
 | |
| 
 | |
| // copyOnWriteContext pointers determine node ownership... a tree with a write
 | |
| // context equivalent to a node's write context is allowed to modify that node.
 | |
| // A tree whose write context does not match a node's is not allowed to modify
 | |
| // it, and must create a new, writable copy (IE: it's a Clone).
 | |
| //
 | |
| // When doing any write operation, we maintain the invariant that the current
 | |
| // node's context is equal to the context of the tree that requested the write.
 | |
| // We do this by, before we descend into any node, creating a copy with the
 | |
| // correct context if the contexts don't match.
 | |
| //
 | |
| // Since the node we're currently visiting on any write has the requesting
 | |
| // tree's context, that node is modifiable in place.  Children of that node may
 | |
| // not share context, but before we descend into them, we'll make a mutable
 | |
| // copy.
 | |
| type copyOnWriteContext struct {
 | |
| 	freelist *FreeList
 | |
| }
 | |
| 
 | |
| // Clone clones the btree, lazily.  Clone should not be called concurrently,
 | |
| // but the original tree (t) and the new tree (t2) can be used concurrently
 | |
| // once the Clone call completes.
 | |
| //
 | |
| // The internal tree structure of b is marked read-only and shared between t and
 | |
| // t2.  Writes to both t and t2 use copy-on-write logic, creating new nodes
 | |
| // whenever one of b's original nodes would have been modified.  Read operations
 | |
| // should have no performance degredation.  Write operations for both t and t2
 | |
| // will initially experience minor slow-downs caused by additional allocs and
 | |
| // copies due to the aforementioned copy-on-write logic, but should converge to
 | |
| // the original performance characteristics of the original tree.
 | |
| func (t *BTree) Clone() (t2 *BTree) {
 | |
| 	// Create two entirely new copy-on-write contexts.
 | |
| 	// This operation effectively creates three trees:
 | |
| 	//   the original, shared nodes (old b.cow)
 | |
| 	//   the new b.cow nodes
 | |
| 	//   the new out.cow nodes
 | |
| 	cow1, cow2 := *t.cow, *t.cow
 | |
| 	out := *t
 | |
| 	t.cow = &cow1
 | |
| 	out.cow = &cow2
 | |
| 	return &out
 | |
| }
 | |
| 
 | |
| // maxItems returns the max number of items to allow per node.
 | |
| func (t *BTree) maxItems() int {
 | |
| 	return t.degree*2 - 1
 | |
| }
 | |
| 
 | |
| // minItems returns the min number of items to allow per node (ignored for the
 | |
| // root node).
 | |
| func (t *BTree) minItems() int {
 | |
| 	return t.degree - 1
 | |
| }
 | |
| 
 | |
| func (c *copyOnWriteContext) newNode() (n *node) {
 | |
| 	n = c.freelist.newNode()
 | |
| 	n.cow = c
 | |
| 	return
 | |
| }
 | |
| 
 | |
| type freeType int
 | |
| 
 | |
| const (
 | |
| 	ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
 | |
| 	ftStored                       // node was stored in the freelist for later use
 | |
| 	ftNotOwned                     // node was ignored by COW, since it's owned by another one
 | |
| )
 | |
| 
 | |
| // freeNode frees a node within a given COW context, if it's owned by that
 | |
| // context.  It returns what happened to the node (see freeType const
 | |
| // documentation).
 | |
| func (c *copyOnWriteContext) freeNode(n *node) freeType {
 | |
| 	if n.cow == c {
 | |
| 		// clear to allow GC
 | |
| 		n.items.truncate(0)
 | |
| 		n.children.truncate(0)
 | |
| 		n.cow = nil
 | |
| 		if c.freelist.freeNode(n) {
 | |
| 			return ftStored
 | |
| 		} else {
 | |
| 			return ftFreelistFull
 | |
| 		}
 | |
| 	} else {
 | |
| 		return ftNotOwned
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ReplaceOrInsert adds the given item to the tree.  If an item in the tree
 | |
| // already equals the given one, it is removed from the tree and returned.
 | |
| // Otherwise, nil is returned.
 | |
| //
 | |
| // nil cannot be added to the tree (will panic).
 | |
| func (t *BTree) ReplaceOrInsert(item Item) Item {
 | |
| 	if item == nil {
 | |
| 		panic("nil item being added to BTree")
 | |
| 	}
 | |
| 	if t.root == nil {
 | |
| 		t.root = t.cow.newNode()
 | |
| 		t.root.items = append(t.root.items, item)
 | |
| 		t.length++
 | |
| 		return nil
 | |
| 	} else {
 | |
| 		t.root = t.root.mutableFor(t.cow)
 | |
| 		if len(t.root.items) >= t.maxItems() {
 | |
| 			item2, second := t.root.split(t.maxItems() / 2)
 | |
| 			oldroot := t.root
 | |
| 			t.root = t.cow.newNode()
 | |
| 			t.root.items = append(t.root.items, item2)
 | |
| 			t.root.children = append(t.root.children, oldroot, second)
 | |
| 		}
 | |
| 	}
 | |
| 	out := t.root.insert(item, t.maxItems())
 | |
| 	if out == nil {
 | |
| 		t.length++
 | |
| 	}
 | |
| 	return out
 | |
| }
 | |
| 
 | |
| // Delete removes an item equal to the passed in item from the tree, returning
 | |
| // it.  If no such item exists, returns nil.
 | |
| func (t *BTree) Delete(item Item) Item {
 | |
| 	return t.deleteItem(item, removeItem)
 | |
| }
 | |
| 
 | |
| // DeleteMin removes the smallest item in the tree and returns it.
 | |
| // If no such item exists, returns nil.
 | |
| func (t *BTree) DeleteMin() Item {
 | |
| 	return t.deleteItem(nil, removeMin)
 | |
| }
 | |
| 
 | |
| // DeleteMax removes the largest item in the tree and returns it.
 | |
| // If no such item exists, returns nil.
 | |
| func (t *BTree) DeleteMax() Item {
 | |
| 	return t.deleteItem(nil, removeMax)
 | |
| }
 | |
| 
 | |
| func (t *BTree) deleteItem(item Item, typ toRemove) Item {
 | |
| 	if t.root == nil || len(t.root.items) == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	t.root = t.root.mutableFor(t.cow)
 | |
| 	out := t.root.remove(item, t.minItems(), typ)
 | |
| 	if len(t.root.items) == 0 && len(t.root.children) > 0 {
 | |
| 		oldroot := t.root
 | |
| 		t.root = t.root.children[0]
 | |
| 		t.cow.freeNode(oldroot)
 | |
| 	}
 | |
| 	if out != nil {
 | |
| 		t.length--
 | |
| 	}
 | |
| 	return out
 | |
| }
 | |
| 
 | |
| // AscendRange calls the iterator for every value in the tree within the range
 | |
| // [greaterOrEqual, lessThan), until iterator returns false.
 | |
| func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
 | |
| }
 | |
| 
 | |
| // AscendLessThan calls the iterator for every value in the tree within the range
 | |
| // [first, pivot), until iterator returns false.
 | |
| func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(ascend, nil, pivot, false, false, iterator)
 | |
| }
 | |
| 
 | |
| // AscendGreaterOrEqual calls the iterator for every value in the tree within
 | |
| // the range [pivot, last], until iterator returns false.
 | |
| func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(ascend, pivot, nil, true, false, iterator)
 | |
| }
 | |
| 
 | |
| // Ascend calls the iterator for every value in the tree within the range
 | |
| // [first, last], until iterator returns false.
 | |
| func (t *BTree) Ascend(iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(ascend, nil, nil, false, false, iterator)
 | |
| }
 | |
| 
 | |
| // DescendRange calls the iterator for every value in the tree within the range
 | |
| // [lessOrEqual, greaterThan), until iterator returns false.
 | |
| func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
 | |
| }
 | |
| 
 | |
| // DescendLessOrEqual calls the iterator for every value in the tree within the range
 | |
| // [pivot, first], until iterator returns false.
 | |
| func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(descend, pivot, nil, true, false, iterator)
 | |
| }
 | |
| 
 | |
| // DescendGreaterThan calls the iterator for every value in the tree within
 | |
| // the range (pivot, last], until iterator returns false.
 | |
| func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(descend, nil, pivot, false, false, iterator)
 | |
| }
 | |
| 
 | |
| // Descend calls the iterator for every value in the tree within the range
 | |
| // [last, first], until iterator returns false.
 | |
| func (t *BTree) Descend(iterator ItemIterator) {
 | |
| 	if t.root == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	t.root.iterate(descend, nil, nil, false, false, iterator)
 | |
| }
 | |
| 
 | |
| // Get looks for the key item in the tree, returning it.  It returns nil if
 | |
| // unable to find that item.
 | |
| func (t *BTree) Get(key Item) Item {
 | |
| 	if t.root == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return t.root.get(key)
 | |
| }
 | |
| 
 | |
| // Min returns the smallest item in the tree, or nil if the tree is empty.
 | |
| func (t *BTree) Min() Item {
 | |
| 	return min(t.root)
 | |
| }
 | |
| 
 | |
| // Max returns the largest item in the tree, or nil if the tree is empty.
 | |
| func (t *BTree) Max() Item {
 | |
| 	return max(t.root)
 | |
| }
 | |
| 
 | |
| // Has returns true if the given key is in the tree.
 | |
| func (t *BTree) Has(key Item) bool {
 | |
| 	return t.Get(key) != nil
 | |
| }
 | |
| 
 | |
| // Len returns the number of items currently in the tree.
 | |
| func (t *BTree) Len() int {
 | |
| 	return t.length
 | |
| }
 | |
| 
 | |
| // Clear removes all items from the btree.  If addNodesToFreelist is true,
 | |
| // t's nodes are added to its freelist as part of this call, until the freelist
 | |
| // is full.  Otherwise, the root node is simply dereferenced and the subtree
 | |
| // left to Go's normal GC processes.
 | |
| //
 | |
| // This can be much faster
 | |
| // than calling Delete on all elements, because that requires finding/removing
 | |
| // each element in the tree and updating the tree accordingly.  It also is
 | |
| // somewhat faster than creating a new tree to replace the old one, because
 | |
| // nodes from the old tree are reclaimed into the freelist for use by the new
 | |
| // one, instead of being lost to the garbage collector.
 | |
| //
 | |
| // This call takes:
 | |
| //   O(1): when addNodesToFreelist is false, this is a single operation.
 | |
| //   O(1): when the freelist is already full, it breaks out immediately
 | |
| //   O(freelist size):  when the freelist is empty and the nodes are all owned
 | |
| //       by this tree, nodes are added to the freelist until full.
 | |
| //   O(tree size):  when all nodes are owned by another tree, all nodes are
 | |
| //       iterated over looking for nodes to add to the freelist, and due to
 | |
| //       ownership, none are.
 | |
| func (t *BTree) Clear(addNodesToFreelist bool) {
 | |
| 	if t.root != nil && addNodesToFreelist {
 | |
| 		t.root.reset(t.cow)
 | |
| 	}
 | |
| 	t.root, t.length = nil, 0
 | |
| }
 | |
| 
 | |
| // reset returns a subtree to the freelist.  It breaks out immediately if the
 | |
| // freelist is full, since the only benefit of iterating is to fill that
 | |
| // freelist up.  Returns true if parent reset call should continue.
 | |
| func (n *node) reset(c *copyOnWriteContext) bool {
 | |
| 	for _, child := range n.children {
 | |
| 		if !child.reset(c) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return c.freeNode(n) != ftFreelistFull
 | |
| }
 | |
| 
 | |
| // Int implements the Item interface for integers.
 | |
| type Int int
 | |
| 
 | |
| // Less returns true if int(a) < int(b).
 | |
| func (a Int) Less(b Item) bool {
 | |
| 	return a < b.(Int)
 | |
| }
 | 
