mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-11-04 10:03:42 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			283 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2021 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package slices defines various functions useful with slices of any type.
 | 
						|
// Unless otherwise specified, these functions all apply to the elements
 | 
						|
// of a slice at index 0 <= i < len(s).
 | 
						|
//
 | 
						|
// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
 | 
						|
// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
 | 
						|
// or the sorting may fail to sort correctly. A common case is when sorting slices of
 | 
						|
// floating-point numbers containing NaN values.
 | 
						|
package slices
 | 
						|
 | 
						|
import "golang.org/x/exp/constraints"
 | 
						|
 | 
						|
// Equal reports whether two slices are equal: the same length and all
 | 
						|
// elements equal. If the lengths are different, Equal returns false.
 | 
						|
// Otherwise, the elements are compared in increasing index order, and the
 | 
						|
// comparison stops at the first unequal pair.
 | 
						|
// Floating point NaNs are not considered equal.
 | 
						|
func Equal[E comparable](s1, s2 []E) bool {
 | 
						|
	if len(s1) != len(s2) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i := range s1 {
 | 
						|
		if s1[i] != s2[i] {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// EqualFunc reports whether two slices are equal using a comparison
 | 
						|
// function on each pair of elements. If the lengths are different,
 | 
						|
// EqualFunc returns false. Otherwise, the elements are compared in
 | 
						|
// increasing index order, and the comparison stops at the first index
 | 
						|
// for which eq returns false.
 | 
						|
func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
 | 
						|
	if len(s1) != len(s2) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		v2 := s2[i]
 | 
						|
		if !eq(v1, v2) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// Compare compares the elements of s1 and s2.
 | 
						|
// The elements are compared sequentially, starting at index 0,
 | 
						|
// until one element is not equal to the other.
 | 
						|
// The result of comparing the first non-matching elements is returned.
 | 
						|
// If both slices are equal until one of them ends, the shorter slice is
 | 
						|
// considered less than the longer one.
 | 
						|
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
 | 
						|
// Comparisons involving floating point NaNs are ignored.
 | 
						|
func Compare[E constraints.Ordered](s1, s2 []E) int {
 | 
						|
	s2len := len(s2)
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		if i >= s2len {
 | 
						|
			return +1
 | 
						|
		}
 | 
						|
		v2 := s2[i]
 | 
						|
		switch {
 | 
						|
		case v1 < v2:
 | 
						|
			return -1
 | 
						|
		case v1 > v2:
 | 
						|
			return +1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(s1) < s2len {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// CompareFunc is like Compare but uses a comparison function
 | 
						|
// on each pair of elements. The elements are compared in increasing
 | 
						|
// index order, and the comparisons stop after the first time cmp
 | 
						|
// returns non-zero.
 | 
						|
// The result is the first non-zero result of cmp; if cmp always
 | 
						|
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
 | 
						|
// and +1 if len(s1) > len(s2).
 | 
						|
func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
 | 
						|
	s2len := len(s2)
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		if i >= s2len {
 | 
						|
			return +1
 | 
						|
		}
 | 
						|
		v2 := s2[i]
 | 
						|
		if c := cmp(v1, v2); c != 0 {
 | 
						|
			return c
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(s1) < s2len {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// Index returns the index of the first occurrence of v in s,
 | 
						|
// or -1 if not present.
 | 
						|
func Index[E comparable](s []E, v E) int {
 | 
						|
	for i := range s {
 | 
						|
		if v == s[i] {
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
// IndexFunc returns the first index i satisfying f(s[i]),
 | 
						|
// or -1 if none do.
 | 
						|
func IndexFunc[E any](s []E, f func(E) bool) int {
 | 
						|
	for i := range s {
 | 
						|
		if f(s[i]) {
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
// Contains reports whether v is present in s.
 | 
						|
func Contains[E comparable](s []E, v E) bool {
 | 
						|
	return Index(s, v) >= 0
 | 
						|
}
 | 
						|
 | 
						|
// ContainsFunc reports whether at least one
 | 
						|
// element e of s satisfies f(e).
 | 
						|
func ContainsFunc[E any](s []E, f func(E) bool) bool {
 | 
						|
	return IndexFunc(s, f) >= 0
 | 
						|
}
 | 
						|
 | 
						|
// Insert inserts the values v... into s at index i,
 | 
						|
// returning the modified slice.
 | 
						|
// In the returned slice r, r[i] == v[0].
 | 
						|
// Insert panics if i is out of range.
 | 
						|
// This function is O(len(s) + len(v)).
 | 
						|
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
 | 
						|
	tot := len(s) + len(v)
 | 
						|
	if tot <= cap(s) {
 | 
						|
		s2 := s[:tot]
 | 
						|
		copy(s2[i+len(v):], s[i:])
 | 
						|
		copy(s2[i:], v)
 | 
						|
		return s2
 | 
						|
	}
 | 
						|
	s2 := make(S, tot)
 | 
						|
	copy(s2, s[:i])
 | 
						|
	copy(s2[i:], v)
 | 
						|
	copy(s2[i+len(v):], s[i:])
 | 
						|
	return s2
 | 
						|
}
 | 
						|
 | 
						|
// Delete removes the elements s[i:j] from s, returning the modified slice.
 | 
						|
// Delete panics if s[i:j] is not a valid slice of s.
 | 
						|
// Delete modifies the contents of the slice s; it does not create a new slice.
 | 
						|
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
 | 
						|
// make a single call deleting them all together than to delete one at a time.
 | 
						|
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
 | 
						|
// elements contain pointers you might consider zeroing those elements so that
 | 
						|
// objects they reference can be garbage collected.
 | 
						|
func Delete[S ~[]E, E any](s S, i, j int) S {
 | 
						|
	_ = s[i:j] // bounds check
 | 
						|
 | 
						|
	return append(s[:i], s[j:]...)
 | 
						|
}
 | 
						|
 | 
						|
// DeleteFunc removes any elements from s for which del returns true,
 | 
						|
// returning the modified slice.
 | 
						|
// When DeleteFunc removes m elements, it might not modify the elements
 | 
						|
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
 | 
						|
// zeroing those elements so that objects they reference can be garbage
 | 
						|
// collected.
 | 
						|
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
 | 
						|
	// Don't start copying elements until we find one to delete.
 | 
						|
	for i, v := range s {
 | 
						|
		if del(v) {
 | 
						|
			j := i
 | 
						|
			for i++; i < len(s); i++ {
 | 
						|
				v = s[i]
 | 
						|
				if !del(v) {
 | 
						|
					s[j] = v
 | 
						|
					j++
 | 
						|
				}
 | 
						|
			}
 | 
						|
			return s[:j]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// Replace replaces the elements s[i:j] by the given v, and returns the
 | 
						|
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
 | 
						|
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
 | 
						|
	_ = s[i:j] // verify that i:j is a valid subslice
 | 
						|
	tot := len(s[:i]) + len(v) + len(s[j:])
 | 
						|
	if tot <= cap(s) {
 | 
						|
		s2 := s[:tot]
 | 
						|
		copy(s2[i+len(v):], s[j:])
 | 
						|
		copy(s2[i:], v)
 | 
						|
		return s2
 | 
						|
	}
 | 
						|
	s2 := make(S, tot)
 | 
						|
	copy(s2, s[:i])
 | 
						|
	copy(s2[i:], v)
 | 
						|
	copy(s2[i+len(v):], s[j:])
 | 
						|
	return s2
 | 
						|
}
 | 
						|
 | 
						|
// Clone returns a copy of the slice.
 | 
						|
// The elements are copied using assignment, so this is a shallow clone.
 | 
						|
func Clone[S ~[]E, E any](s S) S {
 | 
						|
	// Preserve nil in case it matters.
 | 
						|
	if s == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return append(S([]E{}), s...)
 | 
						|
}
 | 
						|
 | 
						|
// Compact replaces consecutive runs of equal elements with a single copy.
 | 
						|
// This is like the uniq command found on Unix.
 | 
						|
// Compact modifies the contents of the slice s; it does not create a new slice.
 | 
						|
// When Compact discards m elements in total, it might not modify the elements
 | 
						|
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
 | 
						|
// zeroing those elements so that objects they reference can be garbage collected.
 | 
						|
func Compact[S ~[]E, E comparable](s S) S {
 | 
						|
	if len(s) < 2 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	i := 1
 | 
						|
	for k := 1; k < len(s); k++ {
 | 
						|
		if s[k] != s[k-1] {
 | 
						|
			if i != k {
 | 
						|
				s[i] = s[k]
 | 
						|
			}
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return s[:i]
 | 
						|
}
 | 
						|
 | 
						|
// CompactFunc is like Compact but uses a comparison function.
 | 
						|
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
 | 
						|
	if len(s) < 2 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	i := 1
 | 
						|
	for k := 1; k < len(s); k++ {
 | 
						|
		if !eq(s[k], s[k-1]) {
 | 
						|
			if i != k {
 | 
						|
				s[i] = s[k]
 | 
						|
			}
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return s[:i]
 | 
						|
}
 | 
						|
 | 
						|
// Grow increases the slice's capacity, if necessary, to guarantee space for
 | 
						|
// another n elements. After Grow(n), at least n elements can be appended
 | 
						|
// to the slice without another allocation. If n is negative or too large to
 | 
						|
// allocate the memory, Grow panics.
 | 
						|
func Grow[S ~[]E, E any](s S, n int) S {
 | 
						|
	if n < 0 {
 | 
						|
		panic("cannot be negative")
 | 
						|
	}
 | 
						|
	if n -= cap(s) - len(s); n > 0 {
 | 
						|
		// TODO(https://go.dev/issue/53888): Make using []E instead of S
 | 
						|
		// to workaround a compiler bug where the runtime.growslice optimization
 | 
						|
		// does not take effect. Revert when the compiler is fixed.
 | 
						|
		s = append([]E(s)[:cap(s)], make([]E, n)...)[:len(s)]
 | 
						|
	}
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
 | 
						|
func Clip[S ~[]E, E any](s S) S {
 | 
						|
	return s[:len(s):len(s)]
 | 
						|
}
 |