mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-11-04 18:13:42 +08:00 
			
		
		
		
	I needed "split" specifically so I can do something like:
```hcl
variable PLATFORMS {
  default = "linux/amd64"
}
target foo {
  platforms = split(",", "${PLATFORMS}")
  # other stuff
}
```
Where the existing "csvdecode" does not work for this because it parses
the string into a list of objects instead of a list of strings.
I went ahead and just added all the available new functions.
Signed-off-by: Brian Goff <cpuguy83@gmail.com>
		
	
		
			
				
	
	
		
			358 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package convert
 | 
						|
 | 
						|
import (
 | 
						|
	"github.com/zclconf/go-cty/cty"
 | 
						|
)
 | 
						|
 | 
						|
// The current unify implementation is somewhat inefficient, but we accept this
 | 
						|
// under the assumption that it will generally be used with small numbers of
 | 
						|
// types and with types of reasonable complexity. However, it does have a
 | 
						|
// "happy path" where all of the given types are equal.
 | 
						|
//
 | 
						|
// This function is likely to have poor performance in cases where any given
 | 
						|
// types are very complex (lots of deeply-nested structures) or if the list
 | 
						|
// of types itself is very large. In particular, it will walk the nested type
 | 
						|
// structure under the given types several times, especially when given a
 | 
						|
// list of types for which unification is not possible, since each permutation
 | 
						|
// will be tried to determine that result.
 | 
						|
func unify(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
 | 
						|
	if len(types) == 0 {
 | 
						|
		// Degenerate case
 | 
						|
		return cty.NilType, nil
 | 
						|
	}
 | 
						|
 | 
						|
	// If all of the given types are of the same structural kind, we may be
 | 
						|
	// able to construct a new type that they can all be unified to, even if
 | 
						|
	// that is not one of the given types. We must try this before the general
 | 
						|
	// behavior below because in unsafe mode we can convert an object type to
 | 
						|
	// a subset of that type, which would be a much less useful conversion for
 | 
						|
	// unification purposes.
 | 
						|
	{
 | 
						|
		mapCt := 0
 | 
						|
		objectCt := 0
 | 
						|
		tupleCt := 0
 | 
						|
		dynamicCt := 0
 | 
						|
		for _, ty := range types {
 | 
						|
			switch {
 | 
						|
			case ty.IsMapType():
 | 
						|
				mapCt++
 | 
						|
			case ty.IsObjectType():
 | 
						|
				objectCt++
 | 
						|
			case ty.IsTupleType():
 | 
						|
				tupleCt++
 | 
						|
			case ty == cty.DynamicPseudoType:
 | 
						|
				dynamicCt++
 | 
						|
			default:
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		switch {
 | 
						|
		case mapCt > 0 && (mapCt+dynamicCt) == len(types):
 | 
						|
			return unifyMapTypes(types, unsafe, dynamicCt > 0)
 | 
						|
		case objectCt > 0 && (objectCt+dynamicCt) == len(types):
 | 
						|
			return unifyObjectTypes(types, unsafe, dynamicCt > 0)
 | 
						|
		case tupleCt > 0 && (tupleCt+dynamicCt) == len(types):
 | 
						|
			return unifyTupleTypes(types, unsafe, dynamicCt > 0)
 | 
						|
		case objectCt > 0 && tupleCt > 0:
 | 
						|
			// Can never unify object and tuple types since they have incompatible kinds
 | 
						|
			return cty.NilType, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	prefOrder := sortTypes(types)
 | 
						|
 | 
						|
	// sortTypes gives us an order where earlier items are preferable as
 | 
						|
	// our result type. We'll now walk through these and choose the first
 | 
						|
	// one we encounter for which conversions exist for all source types.
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
Preferences:
 | 
						|
	for _, wantTypeIdx := range prefOrder {
 | 
						|
		wantType := types[wantTypeIdx]
 | 
						|
		for i, tryType := range types {
 | 
						|
			if i == wantTypeIdx {
 | 
						|
				// Don't need to convert our wanted type to itself
 | 
						|
				conversions[i] = nil
 | 
						|
				continue
 | 
						|
			}
 | 
						|
 | 
						|
			if tryType.Equals(wantType) {
 | 
						|
				conversions[i] = nil
 | 
						|
				continue
 | 
						|
			}
 | 
						|
 | 
						|
			if unsafe {
 | 
						|
				conversions[i] = GetConversionUnsafe(tryType, wantType)
 | 
						|
			} else {
 | 
						|
				conversions[i] = GetConversion(tryType, wantType)
 | 
						|
			}
 | 
						|
 | 
						|
			if conversions[i] == nil {
 | 
						|
				// wantType is not a suitable unification type, so we'll
 | 
						|
				// try the next one in our preference order.
 | 
						|
				continue Preferences
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		return wantType, conversions
 | 
						|
	}
 | 
						|
 | 
						|
	// If we fall out here, no unification is possible
 | 
						|
	return cty.NilType, nil
 | 
						|
}
 | 
						|
 | 
						|
func unifyMapTypes(types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
 | 
						|
	// If we had any dynamic types in the input here then we can't predict
 | 
						|
	// what path we'll take through here once these become known types, so
 | 
						|
	// we'll conservatively produce DynamicVal for these.
 | 
						|
	if hasDynamic {
 | 
						|
		return unifyAllAsDynamic(types)
 | 
						|
	}
 | 
						|
 | 
						|
	elemTypes := make([]cty.Type, 0, len(types))
 | 
						|
	for _, ty := range types {
 | 
						|
		elemTypes = append(elemTypes, ty.ElementType())
 | 
						|
	}
 | 
						|
	retElemType, _ := unify(elemTypes, unsafe)
 | 
						|
	if retElemType == cty.NilType {
 | 
						|
		return cty.NilType, nil
 | 
						|
	}
 | 
						|
 | 
						|
	retTy := cty.Map(retElemType)
 | 
						|
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i, ty := range types {
 | 
						|
		if ty.Equals(retTy) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if unsafe {
 | 
						|
			conversions[i] = GetConversionUnsafe(ty, retTy)
 | 
						|
		} else {
 | 
						|
			conversions[i] = GetConversion(ty, retTy)
 | 
						|
		}
 | 
						|
		if conversions[i] == nil {
 | 
						|
			// Shouldn't be reachable, since we were able to unify
 | 
						|
			return cty.NilType, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return retTy, conversions
 | 
						|
}
 | 
						|
 | 
						|
func unifyObjectTypes(types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
 | 
						|
	// If we had any dynamic types in the input here then we can't predict
 | 
						|
	// what path we'll take through here once these become known types, so
 | 
						|
	// we'll conservatively produce DynamicVal for these.
 | 
						|
	if hasDynamic {
 | 
						|
		return unifyAllAsDynamic(types)
 | 
						|
	}
 | 
						|
 | 
						|
	// There are two different ways we can succeed here:
 | 
						|
	// - If all of the given object types have the same set of attribute names
 | 
						|
	//   and the corresponding types are all unifyable, then we construct that
 | 
						|
	//   type.
 | 
						|
	// - If the given object types have different attribute names or their
 | 
						|
	//   corresponding types are not unifyable, we'll instead try to unify
 | 
						|
	//   all of the attribute types together to produce a map type.
 | 
						|
	//
 | 
						|
	// Our unification behavior is intentionally stricter than our conversion
 | 
						|
	// behavior for subset object types because user intent is different with
 | 
						|
	// unification use-cases: it makes sense to allow {"foo":true} to convert
 | 
						|
	// to emptyobjectval, but unifying an object with an attribute with the
 | 
						|
	// empty object type should be an error because unifying to the empty
 | 
						|
	// object type would be suprising and useless.
 | 
						|
 | 
						|
	firstAttrs := types[0].AttributeTypes()
 | 
						|
	for _, ty := range types[1:] {
 | 
						|
		thisAttrs := ty.AttributeTypes()
 | 
						|
		if len(thisAttrs) != len(firstAttrs) {
 | 
						|
			// If number of attributes is different then there can be no
 | 
						|
			// object type in common.
 | 
						|
			return unifyObjectTypesToMap(types, unsafe)
 | 
						|
		}
 | 
						|
		for name := range thisAttrs {
 | 
						|
			if _, ok := firstAttrs[name]; !ok {
 | 
						|
				// If attribute names don't exactly match then there can be
 | 
						|
				// no object type in common.
 | 
						|
				return unifyObjectTypesToMap(types, unsafe)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// If we get here then we've proven that all of the given object types
 | 
						|
	// have exactly the same set of attribute names, though the types may
 | 
						|
	// differ.
 | 
						|
	retAtys := make(map[string]cty.Type)
 | 
						|
	atysAcross := make([]cty.Type, len(types))
 | 
						|
	for name := range firstAttrs {
 | 
						|
		for i, ty := range types {
 | 
						|
			atysAcross[i] = ty.AttributeType(name)
 | 
						|
		}
 | 
						|
		retAtys[name], _ = unify(atysAcross, unsafe)
 | 
						|
		if retAtys[name] == cty.NilType {
 | 
						|
			// Cannot unify this attribute alone, which means that unification
 | 
						|
			// of everything down to a map type can't be possible either.
 | 
						|
			return cty.NilType, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
	retTy := cty.Object(retAtys)
 | 
						|
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i, ty := range types {
 | 
						|
		if ty.Equals(retTy) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if unsafe {
 | 
						|
			conversions[i] = GetConversionUnsafe(ty, retTy)
 | 
						|
		} else {
 | 
						|
			conversions[i] = GetConversion(ty, retTy)
 | 
						|
		}
 | 
						|
		if conversions[i] == nil {
 | 
						|
			// Shouldn't be reachable, since we were able to unify
 | 
						|
			return unifyObjectTypesToMap(types, unsafe)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return retTy, conversions
 | 
						|
}
 | 
						|
 | 
						|
func unifyObjectTypesToMap(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
 | 
						|
	// This is our fallback case for unifyObjectTypes, where we see if we can
 | 
						|
	// construct a map type that can accept all of the attribute types.
 | 
						|
 | 
						|
	var atys []cty.Type
 | 
						|
	for _, ty := range types {
 | 
						|
		for _, aty := range ty.AttributeTypes() {
 | 
						|
			atys = append(atys, aty)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ety, _ := unify(atys, unsafe)
 | 
						|
	if ety == cty.NilType {
 | 
						|
		return cty.NilType, nil
 | 
						|
	}
 | 
						|
 | 
						|
	retTy := cty.Map(ety)
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i, ty := range types {
 | 
						|
		if ty.Equals(retTy) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if unsafe {
 | 
						|
			conversions[i] = GetConversionUnsafe(ty, retTy)
 | 
						|
		} else {
 | 
						|
			conversions[i] = GetConversion(ty, retTy)
 | 
						|
		}
 | 
						|
		if conversions[i] == nil {
 | 
						|
			return cty.NilType, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return retTy, conversions
 | 
						|
}
 | 
						|
 | 
						|
func unifyTupleTypes(types []cty.Type, unsafe bool, hasDynamic bool) (cty.Type, []Conversion) {
 | 
						|
	// If we had any dynamic types in the input here then we can't predict
 | 
						|
	// what path we'll take through here once these become known types, so
 | 
						|
	// we'll conservatively produce DynamicVal for these.
 | 
						|
	if hasDynamic {
 | 
						|
		return unifyAllAsDynamic(types)
 | 
						|
	}
 | 
						|
 | 
						|
	// There are two different ways we can succeed here:
 | 
						|
	// - If all of the given tuple types have the same sequence of element types
 | 
						|
	//   and the corresponding types are all unifyable, then we construct that
 | 
						|
	//   type.
 | 
						|
	// - If the given tuple types have different element types or their
 | 
						|
	//   corresponding types are not unifyable, we'll instead try to unify
 | 
						|
	//   all of the elements types together to produce a list type.
 | 
						|
 | 
						|
	firstEtys := types[0].TupleElementTypes()
 | 
						|
	for _, ty := range types[1:] {
 | 
						|
		thisEtys := ty.TupleElementTypes()
 | 
						|
		if len(thisEtys) != len(firstEtys) {
 | 
						|
			// If number of elements is different then there can be no
 | 
						|
			// tuple type in common.
 | 
						|
			return unifyTupleTypesToList(types, unsafe)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// If we get here then we've proven that all of the given tuple types
 | 
						|
	// have the same number of elements, though the types may differ.
 | 
						|
	retEtys := make([]cty.Type, len(firstEtys))
 | 
						|
	atysAcross := make([]cty.Type, len(types))
 | 
						|
	for idx := range firstEtys {
 | 
						|
		for tyI, ty := range types {
 | 
						|
			atysAcross[tyI] = ty.TupleElementTypes()[idx]
 | 
						|
		}
 | 
						|
		retEtys[idx], _ = unify(atysAcross, unsafe)
 | 
						|
		if retEtys[idx] == cty.NilType {
 | 
						|
			// Cannot unify this element alone, which means that unification
 | 
						|
			// of everything down to a map type can't be possible either.
 | 
						|
			return cty.NilType, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
	retTy := cty.Tuple(retEtys)
 | 
						|
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i, ty := range types {
 | 
						|
		if ty.Equals(retTy) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if unsafe {
 | 
						|
			conversions[i] = GetConversionUnsafe(ty, retTy)
 | 
						|
		} else {
 | 
						|
			conversions[i] = GetConversion(ty, retTy)
 | 
						|
		}
 | 
						|
		if conversions[i] == nil {
 | 
						|
			// Shouldn't be reachable, since we were able to unify
 | 
						|
			return unifyTupleTypesToList(types, unsafe)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return retTy, conversions
 | 
						|
}
 | 
						|
 | 
						|
func unifyTupleTypesToList(types []cty.Type, unsafe bool) (cty.Type, []Conversion) {
 | 
						|
	// This is our fallback case for unifyTupleTypes, where we see if we can
 | 
						|
	// construct a list type that can accept all of the element types.
 | 
						|
 | 
						|
	var etys []cty.Type
 | 
						|
	for _, ty := range types {
 | 
						|
		for _, ety := range ty.TupleElementTypes() {
 | 
						|
			etys = append(etys, ety)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ety, _ := unify(etys, unsafe)
 | 
						|
	if ety == cty.NilType {
 | 
						|
		return cty.NilType, nil
 | 
						|
	}
 | 
						|
 | 
						|
	retTy := cty.List(ety)
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i, ty := range types {
 | 
						|
		if ty.Equals(retTy) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if unsafe {
 | 
						|
			conversions[i] = GetConversionUnsafe(ty, retTy)
 | 
						|
		} else {
 | 
						|
			conversions[i] = GetConversion(ty, retTy)
 | 
						|
		}
 | 
						|
		if conversions[i] == nil {
 | 
						|
			// Shouldn't be reachable, since we were able to unify
 | 
						|
			return unifyObjectTypesToMap(types, unsafe)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return retTy, conversions
 | 
						|
}
 | 
						|
 | 
						|
func unifyAllAsDynamic(types []cty.Type) (cty.Type, []Conversion) {
 | 
						|
	conversions := make([]Conversion, len(types))
 | 
						|
	for i := range conversions {
 | 
						|
		conversions[i] = func(cty.Value) (cty.Value, error) {
 | 
						|
			return cty.DynamicVal, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return cty.DynamicPseudoType, conversions
 | 
						|
}
 |