mirror of
				https://gitea.com/Lydanne/buildx.git
				synced 2025-11-04 01:53:42 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			684 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			684 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2018 Klaus Post. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
// Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
 | 
						|
 | 
						|
package fse
 | 
						|
 | 
						|
import (
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
)
 | 
						|
 | 
						|
// Compress the input bytes. Input must be < 2GB.
 | 
						|
// Provide a Scratch buffer to avoid memory allocations.
 | 
						|
// Note that the output is also kept in the scratch buffer.
 | 
						|
// If input is too hard to compress, ErrIncompressible is returned.
 | 
						|
// If input is a single byte value repeated ErrUseRLE is returned.
 | 
						|
func Compress(in []byte, s *Scratch) ([]byte, error) {
 | 
						|
	if len(in) <= 1 {
 | 
						|
		return nil, ErrIncompressible
 | 
						|
	}
 | 
						|
	if len(in) > (2<<30)-1 {
 | 
						|
		return nil, errors.New("input too big, must be < 2GB")
 | 
						|
	}
 | 
						|
	s, err := s.prepare(in)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	// Create histogram, if none was provided.
 | 
						|
	maxCount := s.maxCount
 | 
						|
	if maxCount == 0 {
 | 
						|
		maxCount = s.countSimple(in)
 | 
						|
	}
 | 
						|
	// Reset for next run.
 | 
						|
	s.clearCount = true
 | 
						|
	s.maxCount = 0
 | 
						|
	if maxCount == len(in) {
 | 
						|
		// One symbol, use RLE
 | 
						|
		return nil, ErrUseRLE
 | 
						|
	}
 | 
						|
	if maxCount == 1 || maxCount < (len(in)>>7) {
 | 
						|
		// Each symbol present maximum once or too well distributed.
 | 
						|
		return nil, ErrIncompressible
 | 
						|
	}
 | 
						|
	s.optimalTableLog()
 | 
						|
	err = s.normalizeCount()
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	err = s.writeCount()
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	if false {
 | 
						|
		err = s.validateNorm()
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	err = s.buildCTable()
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	err = s.compress(in)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	s.Out = s.bw.out
 | 
						|
	// Check if we compressed.
 | 
						|
	if len(s.Out) >= len(in) {
 | 
						|
		return nil, ErrIncompressible
 | 
						|
	}
 | 
						|
	return s.Out, nil
 | 
						|
}
 | 
						|
 | 
						|
// cState contains the compression state of a stream.
 | 
						|
type cState struct {
 | 
						|
	bw         *bitWriter
 | 
						|
	stateTable []uint16
 | 
						|
	state      uint16
 | 
						|
}
 | 
						|
 | 
						|
// init will initialize the compression state to the first symbol of the stream.
 | 
						|
func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
 | 
						|
	c.bw = bw
 | 
						|
	c.stateTable = ct.stateTable
 | 
						|
 | 
						|
	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
 | 
						|
	im := int32((nbBitsOut << 16) - first.deltaNbBits)
 | 
						|
	lu := (im >> nbBitsOut) + first.deltaFindState
 | 
						|
	c.state = c.stateTable[lu]
 | 
						|
}
 | 
						|
 | 
						|
// encode the output symbol provided and write it to the bitstream.
 | 
						|
func (c *cState) encode(symbolTT symbolTransform) {
 | 
						|
	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
 | 
						|
	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
 | 
						|
	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
 | 
						|
	c.state = c.stateTable[dstState]
 | 
						|
}
 | 
						|
 | 
						|
// encode the output symbol provided and write it to the bitstream.
 | 
						|
func (c *cState) encodeZero(symbolTT symbolTransform) {
 | 
						|
	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
 | 
						|
	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
 | 
						|
	c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
 | 
						|
	c.state = c.stateTable[dstState]
 | 
						|
}
 | 
						|
 | 
						|
// flush will write the tablelog to the output and flush the remaining full bytes.
 | 
						|
func (c *cState) flush(tableLog uint8) {
 | 
						|
	c.bw.flush32()
 | 
						|
	c.bw.addBits16NC(c.state, tableLog)
 | 
						|
	c.bw.flush()
 | 
						|
}
 | 
						|
 | 
						|
// compress is the main compression loop that will encode the input from the last byte to the first.
 | 
						|
func (s *Scratch) compress(src []byte) error {
 | 
						|
	if len(src) <= 2 {
 | 
						|
		return errors.New("compress: src too small")
 | 
						|
	}
 | 
						|
	tt := s.ct.symbolTT[:256]
 | 
						|
	s.bw.reset(s.Out)
 | 
						|
 | 
						|
	// Our two states each encodes every second byte.
 | 
						|
	// Last byte encoded (first byte decoded) will always be encoded by c1.
 | 
						|
	var c1, c2 cState
 | 
						|
 | 
						|
	// Encode so remaining size is divisible by 4.
 | 
						|
	ip := len(src)
 | 
						|
	if ip&1 == 1 {
 | 
						|
		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
 | 
						|
		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
 | 
						|
		c1.encodeZero(tt[src[ip-3]])
 | 
						|
		ip -= 3
 | 
						|
	} else {
 | 
						|
		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
 | 
						|
		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
 | 
						|
		ip -= 2
 | 
						|
	}
 | 
						|
	if ip&2 != 0 {
 | 
						|
		c2.encodeZero(tt[src[ip-1]])
 | 
						|
		c1.encodeZero(tt[src[ip-2]])
 | 
						|
		ip -= 2
 | 
						|
	}
 | 
						|
 | 
						|
	// Main compression loop.
 | 
						|
	switch {
 | 
						|
	case !s.zeroBits && s.actualTableLog <= 8:
 | 
						|
		// We can encode 4 symbols without requiring a flush.
 | 
						|
		// We do not need to check if any output is 0 bits.
 | 
						|
		for ip >= 4 {
 | 
						|
			s.bw.flush32()
 | 
						|
			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | 
						|
			c2.encode(tt[v0])
 | 
						|
			c1.encode(tt[v1])
 | 
						|
			c2.encode(tt[v2])
 | 
						|
			c1.encode(tt[v3])
 | 
						|
			ip -= 4
 | 
						|
		}
 | 
						|
	case !s.zeroBits:
 | 
						|
		// We do not need to check if any output is 0 bits.
 | 
						|
		for ip >= 4 {
 | 
						|
			s.bw.flush32()
 | 
						|
			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | 
						|
			c2.encode(tt[v0])
 | 
						|
			c1.encode(tt[v1])
 | 
						|
			s.bw.flush32()
 | 
						|
			c2.encode(tt[v2])
 | 
						|
			c1.encode(tt[v3])
 | 
						|
			ip -= 4
 | 
						|
		}
 | 
						|
	case s.actualTableLog <= 8:
 | 
						|
		// We can encode 4 symbols without requiring a flush
 | 
						|
		for ip >= 4 {
 | 
						|
			s.bw.flush32()
 | 
						|
			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | 
						|
			c2.encodeZero(tt[v0])
 | 
						|
			c1.encodeZero(tt[v1])
 | 
						|
			c2.encodeZero(tt[v2])
 | 
						|
			c1.encodeZero(tt[v3])
 | 
						|
			ip -= 4
 | 
						|
		}
 | 
						|
	default:
 | 
						|
		for ip >= 4 {
 | 
						|
			s.bw.flush32()
 | 
						|
			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | 
						|
			c2.encodeZero(tt[v0])
 | 
						|
			c1.encodeZero(tt[v1])
 | 
						|
			s.bw.flush32()
 | 
						|
			c2.encodeZero(tt[v2])
 | 
						|
			c1.encodeZero(tt[v3])
 | 
						|
			ip -= 4
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Flush final state.
 | 
						|
	// Used to initialize state when decoding.
 | 
						|
	c2.flush(s.actualTableLog)
 | 
						|
	c1.flush(s.actualTableLog)
 | 
						|
 | 
						|
	return s.bw.close()
 | 
						|
}
 | 
						|
 | 
						|
// writeCount will write the normalized histogram count to header.
 | 
						|
// This is read back by readNCount.
 | 
						|
func (s *Scratch) writeCount() error {
 | 
						|
	var (
 | 
						|
		tableLog  = s.actualTableLog
 | 
						|
		tableSize = 1 << tableLog
 | 
						|
		previous0 bool
 | 
						|
		charnum   uint16
 | 
						|
 | 
						|
		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3
 | 
						|
 | 
						|
		// Write Table Size
 | 
						|
		bitStream = uint32(tableLog - minTablelog)
 | 
						|
		bitCount  = uint(4)
 | 
						|
		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
 | 
						|
		threshold = int16(tableSize)
 | 
						|
		nbBits    = uint(tableLog + 1)
 | 
						|
	)
 | 
						|
	if cap(s.Out) < maxHeaderSize {
 | 
						|
		s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
 | 
						|
	}
 | 
						|
	outP := uint(0)
 | 
						|
	out := s.Out[:maxHeaderSize]
 | 
						|
 | 
						|
	// stops at 1
 | 
						|
	for remaining > 1 {
 | 
						|
		if previous0 {
 | 
						|
			start := charnum
 | 
						|
			for s.norm[charnum] == 0 {
 | 
						|
				charnum++
 | 
						|
			}
 | 
						|
			for charnum >= start+24 {
 | 
						|
				start += 24
 | 
						|
				bitStream += uint32(0xFFFF) << bitCount
 | 
						|
				out[outP] = byte(bitStream)
 | 
						|
				out[outP+1] = byte(bitStream >> 8)
 | 
						|
				outP += 2
 | 
						|
				bitStream >>= 16
 | 
						|
			}
 | 
						|
			for charnum >= start+3 {
 | 
						|
				start += 3
 | 
						|
				bitStream += 3 << bitCount
 | 
						|
				bitCount += 2
 | 
						|
			}
 | 
						|
			bitStream += uint32(charnum-start) << bitCount
 | 
						|
			bitCount += 2
 | 
						|
			if bitCount > 16 {
 | 
						|
				out[outP] = byte(bitStream)
 | 
						|
				out[outP+1] = byte(bitStream >> 8)
 | 
						|
				outP += 2
 | 
						|
				bitStream >>= 16
 | 
						|
				bitCount -= 16
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		count := s.norm[charnum]
 | 
						|
		charnum++
 | 
						|
		max := (2*threshold - 1) - remaining
 | 
						|
		if count < 0 {
 | 
						|
			remaining += count
 | 
						|
		} else {
 | 
						|
			remaining -= count
 | 
						|
		}
 | 
						|
		count++ // +1 for extra accuracy
 | 
						|
		if count >= threshold {
 | 
						|
			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
 | 
						|
		}
 | 
						|
		bitStream += uint32(count) << bitCount
 | 
						|
		bitCount += nbBits
 | 
						|
		if count < max {
 | 
						|
			bitCount--
 | 
						|
		}
 | 
						|
 | 
						|
		previous0 = count == 1
 | 
						|
		if remaining < 1 {
 | 
						|
			return errors.New("internal error: remaining<1")
 | 
						|
		}
 | 
						|
		for remaining < threshold {
 | 
						|
			nbBits--
 | 
						|
			threshold >>= 1
 | 
						|
		}
 | 
						|
 | 
						|
		if bitCount > 16 {
 | 
						|
			out[outP] = byte(bitStream)
 | 
						|
			out[outP+1] = byte(bitStream >> 8)
 | 
						|
			outP += 2
 | 
						|
			bitStream >>= 16
 | 
						|
			bitCount -= 16
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	out[outP] = byte(bitStream)
 | 
						|
	out[outP+1] = byte(bitStream >> 8)
 | 
						|
	outP += (bitCount + 7) / 8
 | 
						|
 | 
						|
	if charnum > s.symbolLen {
 | 
						|
		return errors.New("internal error: charnum > s.symbolLen")
 | 
						|
	}
 | 
						|
	s.Out = out[:outP]
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// symbolTransform contains the state transform for a symbol.
 | 
						|
type symbolTransform struct {
 | 
						|
	deltaFindState int32
 | 
						|
	deltaNbBits    uint32
 | 
						|
}
 | 
						|
 | 
						|
// String prints values as a human readable string.
 | 
						|
func (s symbolTransform) String() string {
 | 
						|
	return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
 | 
						|
}
 | 
						|
 | 
						|
// cTable contains tables used for compression.
 | 
						|
type cTable struct {
 | 
						|
	tableSymbol []byte
 | 
						|
	stateTable  []uint16
 | 
						|
	symbolTT    []symbolTransform
 | 
						|
}
 | 
						|
 | 
						|
// allocCtable will allocate tables needed for compression.
 | 
						|
// If existing tables a re big enough, they are simply re-used.
 | 
						|
func (s *Scratch) allocCtable() {
 | 
						|
	tableSize := 1 << s.actualTableLog
 | 
						|
	// get tableSymbol that is big enough.
 | 
						|
	if cap(s.ct.tableSymbol) < tableSize {
 | 
						|
		s.ct.tableSymbol = make([]byte, tableSize)
 | 
						|
	}
 | 
						|
	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
 | 
						|
 | 
						|
	ctSize := tableSize
 | 
						|
	if cap(s.ct.stateTable) < ctSize {
 | 
						|
		s.ct.stateTable = make([]uint16, ctSize)
 | 
						|
	}
 | 
						|
	s.ct.stateTable = s.ct.stateTable[:ctSize]
 | 
						|
 | 
						|
	if cap(s.ct.symbolTT) < 256 {
 | 
						|
		s.ct.symbolTT = make([]symbolTransform, 256)
 | 
						|
	}
 | 
						|
	s.ct.symbolTT = s.ct.symbolTT[:256]
 | 
						|
}
 | 
						|
 | 
						|
// buildCTable will populate the compression table so it is ready to be used.
 | 
						|
func (s *Scratch) buildCTable() error {
 | 
						|
	tableSize := uint32(1 << s.actualTableLog)
 | 
						|
	highThreshold := tableSize - 1
 | 
						|
	var cumul [maxSymbolValue + 2]int16
 | 
						|
 | 
						|
	s.allocCtable()
 | 
						|
	tableSymbol := s.ct.tableSymbol[:tableSize]
 | 
						|
	// symbol start positions
 | 
						|
	{
 | 
						|
		cumul[0] = 0
 | 
						|
		for ui, v := range s.norm[:s.symbolLen-1] {
 | 
						|
			u := byte(ui) // one less than reference
 | 
						|
			if v == -1 {
 | 
						|
				// Low proba symbol
 | 
						|
				cumul[u+1] = cumul[u] + 1
 | 
						|
				tableSymbol[highThreshold] = u
 | 
						|
				highThreshold--
 | 
						|
			} else {
 | 
						|
				cumul[u+1] = cumul[u] + v
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// Encode last symbol separately to avoid overflowing u
 | 
						|
		u := int(s.symbolLen - 1)
 | 
						|
		v := s.norm[s.symbolLen-1]
 | 
						|
		if v == -1 {
 | 
						|
			// Low proba symbol
 | 
						|
			cumul[u+1] = cumul[u] + 1
 | 
						|
			tableSymbol[highThreshold] = byte(u)
 | 
						|
			highThreshold--
 | 
						|
		} else {
 | 
						|
			cumul[u+1] = cumul[u] + v
 | 
						|
		}
 | 
						|
		if uint32(cumul[s.symbolLen]) != tableSize {
 | 
						|
			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
 | 
						|
		}
 | 
						|
		cumul[s.symbolLen] = int16(tableSize) + 1
 | 
						|
	}
 | 
						|
	// Spread symbols
 | 
						|
	s.zeroBits = false
 | 
						|
	{
 | 
						|
		step := tableStep(tableSize)
 | 
						|
		tableMask := tableSize - 1
 | 
						|
		var position uint32
 | 
						|
		// if any symbol > largeLimit, we may have 0 bits output.
 | 
						|
		largeLimit := int16(1 << (s.actualTableLog - 1))
 | 
						|
		for ui, v := range s.norm[:s.symbolLen] {
 | 
						|
			symbol := byte(ui)
 | 
						|
			if v > largeLimit {
 | 
						|
				s.zeroBits = true
 | 
						|
			}
 | 
						|
			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
 | 
						|
				tableSymbol[position] = symbol
 | 
						|
				position = (position + step) & tableMask
 | 
						|
				for position > highThreshold {
 | 
						|
					position = (position + step) & tableMask
 | 
						|
				} /* Low proba area */
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		// Check if we have gone through all positions
 | 
						|
		if position != 0 {
 | 
						|
			return errors.New("position!=0")
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Build table
 | 
						|
	table := s.ct.stateTable
 | 
						|
	{
 | 
						|
		tsi := int(tableSize)
 | 
						|
		for u, v := range tableSymbol {
 | 
						|
			// TableU16 : sorted by symbol order; gives next state value
 | 
						|
			table[cumul[v]] = uint16(tsi + u)
 | 
						|
			cumul[v]++
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Build Symbol Transformation Table
 | 
						|
	{
 | 
						|
		total := int16(0)
 | 
						|
		symbolTT := s.ct.symbolTT[:s.symbolLen]
 | 
						|
		tableLog := s.actualTableLog
 | 
						|
		tl := (uint32(tableLog) << 16) - (1 << tableLog)
 | 
						|
		for i, v := range s.norm[:s.symbolLen] {
 | 
						|
			switch v {
 | 
						|
			case 0:
 | 
						|
			case -1, 1:
 | 
						|
				symbolTT[i].deltaNbBits = tl
 | 
						|
				symbolTT[i].deltaFindState = int32(total - 1)
 | 
						|
				total++
 | 
						|
			default:
 | 
						|
				maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
 | 
						|
				minStatePlus := uint32(v) << maxBitsOut
 | 
						|
				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
 | 
						|
				symbolTT[i].deltaFindState = int32(total - v)
 | 
						|
				total += v
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if total != int16(tableSize) {
 | 
						|
			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// countSimple will create a simple histogram in s.count.
 | 
						|
// Returns the biggest count.
 | 
						|
// Does not update s.clearCount.
 | 
						|
func (s *Scratch) countSimple(in []byte) (max int) {
 | 
						|
	for _, v := range in {
 | 
						|
		s.count[v]++
 | 
						|
	}
 | 
						|
	m := uint32(0)
 | 
						|
	for i, v := range s.count[:] {
 | 
						|
		if v > m {
 | 
						|
			m = v
 | 
						|
		}
 | 
						|
		if v > 0 {
 | 
						|
			s.symbolLen = uint16(i) + 1
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return int(m)
 | 
						|
}
 | 
						|
 | 
						|
// minTableLog provides the minimum logSize to safely represent a distribution.
 | 
						|
func (s *Scratch) minTableLog() uint8 {
 | 
						|
	minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
 | 
						|
	minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
 | 
						|
	if minBitsSrc < minBitsSymbols {
 | 
						|
		return uint8(minBitsSrc)
 | 
						|
	}
 | 
						|
	return uint8(minBitsSymbols)
 | 
						|
}
 | 
						|
 | 
						|
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
 | 
						|
func (s *Scratch) optimalTableLog() {
 | 
						|
	tableLog := s.TableLog
 | 
						|
	minBits := s.minTableLog()
 | 
						|
	maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
 | 
						|
	if maxBitsSrc < tableLog {
 | 
						|
		// Accuracy can be reduced
 | 
						|
		tableLog = maxBitsSrc
 | 
						|
	}
 | 
						|
	if minBits > tableLog {
 | 
						|
		tableLog = minBits
 | 
						|
	}
 | 
						|
	// Need a minimum to safely represent all symbol values
 | 
						|
	if tableLog < minTablelog {
 | 
						|
		tableLog = minTablelog
 | 
						|
	}
 | 
						|
	if tableLog > maxTableLog {
 | 
						|
		tableLog = maxTableLog
 | 
						|
	}
 | 
						|
	s.actualTableLog = tableLog
 | 
						|
}
 | 
						|
 | 
						|
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
 | 
						|
 | 
						|
// normalizeCount will normalize the count of the symbols so
 | 
						|
// the total is equal to the table size.
 | 
						|
func (s *Scratch) normalizeCount() error {
 | 
						|
	var (
 | 
						|
		tableLog          = s.actualTableLog
 | 
						|
		scale             = 62 - uint64(tableLog)
 | 
						|
		step              = (1 << 62) / uint64(s.br.remain())
 | 
						|
		vStep             = uint64(1) << (scale - 20)
 | 
						|
		stillToDistribute = int16(1 << tableLog)
 | 
						|
		largest           int
 | 
						|
		largestP          int16
 | 
						|
		lowThreshold      = (uint32)(s.br.remain() >> tableLog)
 | 
						|
	)
 | 
						|
 | 
						|
	for i, cnt := range s.count[:s.symbolLen] {
 | 
						|
		// already handled
 | 
						|
		// if (count[s] == s.length) return 0;   /* rle special case */
 | 
						|
 | 
						|
		if cnt == 0 {
 | 
						|
			s.norm[i] = 0
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if cnt <= lowThreshold {
 | 
						|
			s.norm[i] = -1
 | 
						|
			stillToDistribute--
 | 
						|
		} else {
 | 
						|
			proba := (int16)((uint64(cnt) * step) >> scale)
 | 
						|
			if proba < 8 {
 | 
						|
				restToBeat := vStep * uint64(rtbTable[proba])
 | 
						|
				v := uint64(cnt)*step - (uint64(proba) << scale)
 | 
						|
				if v > restToBeat {
 | 
						|
					proba++
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if proba > largestP {
 | 
						|
				largestP = proba
 | 
						|
				largest = i
 | 
						|
			}
 | 
						|
			s.norm[i] = proba
 | 
						|
			stillToDistribute -= proba
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if -stillToDistribute >= (s.norm[largest] >> 1) {
 | 
						|
		// corner case, need another normalization method
 | 
						|
		return s.normalizeCount2()
 | 
						|
	}
 | 
						|
	s.norm[largest] += stillToDistribute
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// Secondary normalization method.
 | 
						|
// To be used when primary method fails.
 | 
						|
func (s *Scratch) normalizeCount2() error {
 | 
						|
	const notYetAssigned = -2
 | 
						|
	var (
 | 
						|
		distributed  uint32
 | 
						|
		total        = uint32(s.br.remain())
 | 
						|
		tableLog     = s.actualTableLog
 | 
						|
		lowThreshold = total >> tableLog
 | 
						|
		lowOne       = (total * 3) >> (tableLog + 1)
 | 
						|
	)
 | 
						|
	for i, cnt := range s.count[:s.symbolLen] {
 | 
						|
		if cnt == 0 {
 | 
						|
			s.norm[i] = 0
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if cnt <= lowThreshold {
 | 
						|
			s.norm[i] = -1
 | 
						|
			distributed++
 | 
						|
			total -= cnt
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if cnt <= lowOne {
 | 
						|
			s.norm[i] = 1
 | 
						|
			distributed++
 | 
						|
			total -= cnt
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		s.norm[i] = notYetAssigned
 | 
						|
	}
 | 
						|
	toDistribute := (1 << tableLog) - distributed
 | 
						|
 | 
						|
	if (total / toDistribute) > lowOne {
 | 
						|
		// risk of rounding to zero
 | 
						|
		lowOne = (total * 3) / (toDistribute * 2)
 | 
						|
		for i, cnt := range s.count[:s.symbolLen] {
 | 
						|
			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
 | 
						|
				s.norm[i] = 1
 | 
						|
				distributed++
 | 
						|
				total -= cnt
 | 
						|
				continue
 | 
						|
			}
 | 
						|
		}
 | 
						|
		toDistribute = (1 << tableLog) - distributed
 | 
						|
	}
 | 
						|
	if distributed == uint32(s.symbolLen)+1 {
 | 
						|
		// all values are pretty poor;
 | 
						|
		//   probably incompressible data (should have already been detected);
 | 
						|
		//   find max, then give all remaining points to max
 | 
						|
		var maxV int
 | 
						|
		var maxC uint32
 | 
						|
		for i, cnt := range s.count[:s.symbolLen] {
 | 
						|
			if cnt > maxC {
 | 
						|
				maxV = i
 | 
						|
				maxC = cnt
 | 
						|
			}
 | 
						|
		}
 | 
						|
		s.norm[maxV] += int16(toDistribute)
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	if total == 0 {
 | 
						|
		// all of the symbols were low enough for the lowOne or lowThreshold
 | 
						|
		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
 | 
						|
			if s.norm[i] > 0 {
 | 
						|
				toDistribute--
 | 
						|
				s.norm[i]++
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	var (
 | 
						|
		vStepLog = 62 - uint64(tableLog)
 | 
						|
		mid      = uint64((1 << (vStepLog - 1)) - 1)
 | 
						|
		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
 | 
						|
		tmpTotal = mid
 | 
						|
	)
 | 
						|
	for i, cnt := range s.count[:s.symbolLen] {
 | 
						|
		if s.norm[i] == notYetAssigned {
 | 
						|
			var (
 | 
						|
				end    = tmpTotal + uint64(cnt)*rStep
 | 
						|
				sStart = uint32(tmpTotal >> vStepLog)
 | 
						|
				sEnd   = uint32(end >> vStepLog)
 | 
						|
				weight = sEnd - sStart
 | 
						|
			)
 | 
						|
			if weight < 1 {
 | 
						|
				return errors.New("weight < 1")
 | 
						|
			}
 | 
						|
			s.norm[i] = int16(weight)
 | 
						|
			tmpTotal = end
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// validateNorm validates the normalized histogram table.
 | 
						|
func (s *Scratch) validateNorm() (err error) {
 | 
						|
	var total int
 | 
						|
	for _, v := range s.norm[:s.symbolLen] {
 | 
						|
		if v >= 0 {
 | 
						|
			total += int(v)
 | 
						|
		} else {
 | 
						|
			total -= int(v)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	defer func() {
 | 
						|
		if err == nil {
 | 
						|
			return
 | 
						|
		}
 | 
						|
		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
 | 
						|
		for i, v := range s.norm[:s.symbolLen] {
 | 
						|
			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
 | 
						|
		}
 | 
						|
	}()
 | 
						|
	if total != (1 << s.actualTableLog) {
 | 
						|
		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
 | 
						|
	}
 | 
						|
	for i, v := range s.count[s.symbolLen:] {
 | 
						|
		if v != 0 {
 | 
						|
			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 |